My home in the coral reefs is being damaged by ocean acidification—which occurs when the ocean absorbs carbon and becomes acidified. I love living among thriving reefs, but increasing acidification degrades the physical structure of these reefs, putting my habitat and food supply at risk. This affects all the creatures living among the reef—not just my team of fellow blacktip reef sharks.

In older literature, the scientific name of this species was often given as C. menisorrah.[5] The blacktail reef shark (C. wheeleri), native to the western Indian Ocean, is now regarded as the same species as the grey reef shark by most authors. It was originally distinguished from the grey reef shark by a white tip on the first dorsal fin, a shorter snout, and one fewer upper tooth row on each side.[6] Based on morphological characters, vertebral counts, and tooth shapes, Garrick (1982) concluded the grey reef shark is most closely related to the silvertip shark (C. albimarginatus).[7] This interpretation was supported by a 1992 allozyme phylogenetic analysis by Lavery.[8]


The Caribbean reef shark is the most common shark on or near coral reefs in the Caribbean. It is a tropical inshore, bottom-dwelling species of the continental and insular shelves. Although C. perezi mainly inhabits shallow waters, it has been recorded to reach depths to at least 98 feet (30 m). Caribbean reef sharks are commonly found close to drop-offs on the outer edges of coral reefs and also may lie motionless on the bottom of the ocean floor. This phenomenon has also been observed in caves off the coast of Mexico and off the Brazilian archipelago of Fernando de Noronha.
The grey reef shark has a streamlined, moderately stout body with a long, blunt snout and large, round eyes. The upper and lower jaws each have 13 or 14 teeth (usually 14 in the upper and 13 in the lower). The upper teeth are triangular with slanted cusps, while the bottom teeth have narrower, erect cusps. The tooth serrations are larger in the upper jaw than in the lower. The first dorsal fin is medium-sized, and there is no ridge running between it and the second dorsal fin. The pectoral fins are narrow and falcate (sickle-shaped).[4]
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
Despite sharks being portrayed as notorious aggressive animals, very few incidents have involved blacktip reef sharks, none being fatal. Still the importance of an apex predator is vital to a balanced and healthy ecosystem. Unfortunately, this species is very susceptible to reef gill netting. And sharks all around continue to be threatened by fishing pressure resulting in a decrease in many shark populations.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×