Dutch ichthyologist Pieter Bleeker first described the grey reef shark in 1856 as Carcharias (Prionodon) amblyrhynchos, in the scientific journal Natuurkundig Tijdschrift voor Nederlandsch-Indië. Later authors moved this species to the genus Carcharhinus. The type specimen was a 1.5 metres (4.9 ft)-long female from the Java Sea.[4] Other common names used for this shark around the world include black-vee whaler, bronze whaler, Fowler's whaler shark, graceful shark, graceful whaler shark, grey shark, grey whaler shark, longnose blacktail shark, school shark, and shortnose blacktail shark. Some of these names are also applied to other species.[2]
The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]
Although there are no active reef shark fisheries in the US Pacific, the reef sharks' disappearance could be caused by recreational fishing or illegal shark finning, which, combined, kill 26 million to 73 million sharks each year. Another possible explanation is that the reef sharks are starving. Their food sources, including coral reef fishes, are decreasing in number because of habitat destruction and human exploitation, and could be taking the sharks with them.
Like all sharks, the blacktip reef shark has exceptional sensory systems. From there keen sense of smell to having the ability to see in low light condition, these adaptation have made them prestige at tracking down there prey. Sharks also have an additional sixth sense where they can sense electromagnetic fields in the water. The ampullae of Lorenzini, located in the snout region, enable a shark to detect its prey without physically seeing it.

Investing in oil and gas is speculative and involves a high degree of risk. There is no guarantee that any returns on investment will be achieved. Investors could lose all or substantially all of their investment. The content provided on this site is for information purposes only and is not a solicitation to buy or an offer to sell any securities. The general information on this site is not intended to be used as individual investment or tax advice. Potential investors should consult their personal tax advisor, attorney, accountant, and financial advisor before investing in oil and gas.
The Caribbean reef shark was originally described from off the coast of Cuba as Platypodon perezi by Poey in 1876. Bigelow and Schroeder later described the same species as Carcharhinus springeri in 1944 and the reef shark appears in much literature under this scientific name. The genus name Carcharhinus is derived from the Greek “karcharos” = sharpen and “rhinos” = nose. The currently accepted valid name is C. perezi (Poey 1876).
The Caribbean reef shark is a viviparous species, meaning its developing embryos are nourished via a placental connection. The litters average four to six pups. Although this shark’s reproduction has not been studied in the northern hemisphere, but to the south, parturition occurs during the Amazon summer of November to December. Pregnant females are often found to have biting scars from males on the sides of their bodies, due to the aggressive behaviors of males during mating. Gestation is believed to take approximately one year. A pregnant female with biting scars and wounds on the sides of her body, taken off the coast of north-northeastern Brazil, carried four near-term embryos. One was a 27.5 in. (700 mm) long male and three were females measuring 27.0 in. (685 mm), 27.4 in. (697 mm), and 27.7 in. (704 mm) in length. Because she was carrying near-term embryos, it is postulated that this area may be a pupping ground. Although such captures have shed light on the topic, relatively little is known about the reproduction of the Caribbean reef shark. Much information has been obtained from a pregnant female carrying four near-term embryos off the coast of northeastern Brazil. This female had scars and wounds on her side. Because the shark carried near-term embryos, it is postulated that this area may be a pupping ground.
$eaworld biodiversity bluefin tuna Climate Change clownfish coral reefs crabs cuttlefishes deep sea dolphins endangered extinction fins fishes frogfishes ghost pipefish global warming Indonesia jellyfish mantas mantis shrimp marine biology Marine Conservation Marine Mammals Marine Protected Areas Marine Science morays nudibranchs octopuses oil spill orca overfishing Papua New Guinea phytoplankton plastics polar bears pollution scuba seafood sea horses sea level rise sea turtles sharks shrimp whales

The coloration is grey above, sometimes with a bronze sheen, and white below. The entire rear margin of the caudal fin has a distinctive, broad, black band. There are dusky to black tips on the pectoral, pelvic, second dorsal, and anal fins.[9] Individuals from the western Indian Ocean have a narrow, white margin at the tip of the first dorsal fin; this trait is usually absent from Pacific populations.[5] Grey reef sharks that spend time in shallow water eventually darken in color, due to tanning.[10] Most grey reef sharks are less than 1.9 m (6.2 ft) long.[4] The maximum reported length is 2.6 m (8.5 ft) and the maximum reported weight is 33.7 kg (74 lb).[9]
A profitable ecotourism industry has arisen around this species involving organized "shark feeds", in which groups of reef sharks are attracted to divers using bait. Some US$6,000,000 is spent annually on shark viewing in the Bahamas, where at some sites a single living Caribbean reef shark has a value between US$13,000 and US$40,000 (compared to a one-time value of US$50–60 for a dead shark).[14] This practice has drawn controversy, as opponents argue that the sharks may learn to associate humans with food, increasing the chances of a shark attack, and that the removal of reef fishes for bait may damage the local ecosystem. Conversely, proponents maintain that shark feeds contribute to conservation by incentivizing the protection of sharks and educating people about them. Thus far, there has been little evidence that shark feeds have increased the risk of attack in the surrounding area.[8][15] Shark feeding has been outlawed off the coast of Florida, but continues at other locations in the Caribbean.[4]
One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
×