Although there are no active reef shark fisheries in the US Pacific, the reef sharks' disappearance could be caused by recreational fishing or illegal shark finning, which, combined, kill 26 million to 73 million sharks each year. Another possible explanation is that the reef sharks are starving. Their food sources, including coral reef fishes, are decreasing in number because of habitat destruction and human exploitation, and could be taking the sharks with them.
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
The Caribbean reef shark is found throughout tropical waters, particularly in the Caribbean Sea. This shark’s range includes Florida, Bermuda, the northern Gulf of Mexico, Yucatan, Cuba, Jamaica, Bahamas, Mexico, Puerto Rico, Colombia, Venezuela, and Brazil. It is one of the most abundant sharks around the Bahamas and the Antilles. Although Caribbean reef sharks are found near reefs in southern Florida, surveys using long-line gear off the east coast of Florida reveal that Caribbean reef sharks are extremely rare north of the Florida Keys.

The Caribbean Reef Shark is known to become aggressive in the presence of food, but they are mostly only considered dangerous to humans because of its size. This shark was fished in Belize for almost the entire 20th century. They were used to make local delicacies in addition to liver oil (mostly used in cosmetics). Their low reproduction rate combined with a high level of hunting and fishing have caused the numbers to dwindle. The shark is now considered to be near threatened. Many countries and organizations have banned the commercial fishing of this species.
Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
Anchialine pool Archipelago Atoll Avulsion Ayre Barrier island Bay Baymouth bar Bight Bodden Brackish marsh Cape Channel Cliff Coast Coastal plain Coastal waterfall Continental margin Continental shelf Coral reef Cove Dune cliff-top Estuary Firth Fjard Fjord Förde Freshwater marsh Fundus Gat Geo Gulf Gut Headland Inlet Intertidal wetland Island Islet Isthmus Lagoon Machair Marine terrace Mega delta Mouth bar Mudflat Natural arch Peninsula Reef Regressive delta Ria River delta Salt marsh Shoal Shore Skerry Sound Spit Stack Strait Strand plain Submarine canyon Tidal island Tidal marsh Tide pool Tied island Tombolo Windwatt
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×