Blowhole Cliffed coast Coastal biogeomorphology Coastal erosion Concordant coastline Current Cuspate foreland Discordant coastline Emergent coastline Feeder bluff Fetch Flat coast Graded shoreline Headlands and bays Ingression coast Large-scale coastal behaviour Longshore drift Marine regression Marine transgression Raised shoreline Rip current Rocky shore Sea cave Sea foam Shoal Steep coast Submergent coastline Surf break Surf zone Surge channel Swash Undertow Volcanic arc Wave-cut platform Wave shoaling Wind wave Wrack zone
Another danger posed to humans by the Caribbean reef shark involves the accumulation of toxins in the flesh of the shark. Since sharks are apex marine predators, they may contain toxic levels of mercury and other heavy metals due to bioaccumulation (increasing concentrations at higher levels in the food web). It was found that methylmercury levels (MeHg) in sharks off the coast of Florida were higher than the FDA guidelines.

Dutch ichthyologist Pieter Bleeker first described the grey reef shark in 1856 as Carcharias (Prionodon) amblyrhynchos, in the scientific journal Natuurkundig Tijdschrift voor Nederlandsch-Indië. Later authors moved this species to the genus Carcharhinus. The type specimen was a 1.5 metres (4.9 ft)-long female from the Java Sea.[4] Other common names used for this shark around the world include black-vee whaler, bronze whaler, Fowler's whaler shark, graceful shark, graceful whaler shark, grey shark, grey whaler shark, longnose blacktail shark, school shark, and shortnose blacktail shark. Some of these names are also applied to other species.[2]
The Caribbean reef shark occurs throughout the tropical western Atlantic Ocean, from North Carolina in the north to Brazil in the south, including Bermuda, the northern Gulf of Mexico, and the Caribbean Sea. However, it is extremely rare north of the Florida Keys. It prefers shallow waters on or around coral reefs, and is commonly found near the drop-offs at the reefs' outer edges.[4] This shark is most common in water shallower than 30 m (98 ft), but has been known to dive to 378 m (1,240 ft).[1]
Despite its abundance in certain areas, the Caribbean reef shark is one of the least-studied large requiem sharks. They are believed to play a major role in shaping Caribbean reef communities. These sharks are more active at night, with no evidence of seasonal changes in activity or migration. Juveniles tend to remain in a localized area throughout the year, while adults range over a wider area.[7]
In California, Reef Check helps ensure the long-term sustainability and health of the nearshore rocky reefs and kelp forests. Reef Check California volunteers are divers, fishermen, kayakers, surfers, boaters, and a wide range of Californians who take a proactive role in making sure that our nearshore ecosystems are healthy and well managed. We monitor rocky reefs inside and outside of California's marine protected areas (MPAs). We work with marine managers, researchers and the public to provide the scientific data needed to make informed, science-based decisions for the sustainable management and conservation of California's ocean environment. We would love your support, volunteer today!
The Caribbean Reef Shark also finds its food in the reefs such as bony fishes, large crustaceans and cephalopods. This shark is also known to feed on yellow sting-rays and eagle rays quite frequently. A unique feature of these predators is that they are capable of reverting or purging their own stomachs. This helps purge the parasites, mucus or any other objects on the stomach lining.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×