The coloration is grey above, sometimes with a bronze sheen, and white below. The entire rear margin of the caudal fin has a distinctive, broad, black band. There are dusky to black tips on the pectoral, pelvic, second dorsal, and anal fins.[9] Individuals from the western Indian Ocean have a narrow, white margin at the tip of the first dorsal fin; this trait is usually absent from Pacific populations.[5] Grey reef sharks that spend time in shallow water eventually darken in color, due to tanning.[10] Most grey reef sharks are less than 1.9 m (6.2 ft) long.[4] The maximum reported length is 2.6 m (8.5 ft) and the maximum reported weight is 33.7 kg (74 lb).[9]
Every year, Reef Check trains thousands of citizen scientist divers who volunteer to survey the health of coral reefs around the world, and rocky reef ecosystems along the entire coast of California. The results are used to improve the management of these critically important natural resources. Reef Check programs provide ecologically sound and economically sustainable solutions to save reefs, by creating partnerships among community volunteers, government agencies, businesses, universities and other nonprofits.
The Caribbean Reef Shark is known to be relatively passive and typically doesn’t pose much of a threat to scuba divers, snorklers, swimmers, or other humans it comes into contact with. They actually tend to avoid human interaction entirely. As per theInternational Shark Attack Files, there have been 27 attacks documented since 1960, of which none have been fatal. Of those attacks, it’s believe that 4 of them were caused because the shark mistakenly thought the person was a food source. The rest of the attacks were provoked attacks such as sharks caught in fishing equipment biting the fisherman.
During mating, the male grey reef shark will bite at the female's body or fins to hold onto her for copulation.[13] Like other requiem sharks, it is viviparous: once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection that sustains them to term. Each female has a single functional ovary (on the right side) and two functional uteruses. One to four pups (six in Hawaii) are born every other year; the number of young increases with female size. Estimates of the gestation period range from 9 to 14 months. Parturition is thought to take place from July to August in the Southern Hemisphere and from March to July in the Northern Hemisphere. However, females with "full-term embryos" have also been reported in the fall off Enewetak. The newborns measure 45–60 cm (18–24 in) long. Sexual maturation occurs at around seven years of age, when the males are 1.3–1.5 m (4.3–4.9 ft) long and females are 1.2–1.4 m (3.9–4.6 ft) long. Females on the Great Barrier Reef mature at 11 years of age, later than at other locations, and at a slightly larger size. The lifespan is at least 25 years.[4][20][24]
The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]
My home in the coral reefs is being damaged by ocean acidification—which occurs when the ocean absorbs carbon and becomes acidified. I love living among thriving reefs, but increasing acidification degrades the physical structure of these reefs, putting my habitat and food supply at risk. This affects all the creatures living among the reef—not just my team of fellow blacktip reef sharks.
They are also found in mangrove areas, moving in and out with the tide and even in fresh water near the sea. They occur singly or in small groups. Adults often aggregate in reef channels at low tide. This is one of the three most common reef sharks in the Indo-Pacific, the two others are the grey reef shark, Carcharhinus amblyrhynchos and whitetip reef shark, Triaenodon obesus.

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).