These sharks prefer the shoreline from Florida to Brazil. This is where it gets the common name from. The tropical parts of the western Atlantic Ocean is home to this variety of sharks. Normally found on the outer edges of reefs, the Caribbean Reef Shark prefers to live in coral reefs and its shallow waters as well as continental shelves and insular shelves. These sharks are found quite commonly at a depth of about 100 feet (30 meters) and are known to dive to incredible depths of around 1250 feet (380 meters).
Living in warm shallow waters often near coral reefs in the Western Atlantic, from Florida to Brazil, the Caribbean reef shark (Carcharhinus perezi) is the most abundant shark in the Caribbean. It feeds mostly on bony fishes and rarely attacks humans. Despite the shark's abundance in some regions, it has a high mortality rate from bycatch and is sought by commercial fisheries for its fins and meat. It is illegal to catch Caribbean reef sharks in U.S. waters. The International Union for the Conservation of Nature (IUCN) lists the species' status as "Near Threatened."
Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]
They are also found in mangrove areas, moving in and out with the tide and even in fresh water near the sea. They occur singly or in small groups. Adults often aggregate in reef channels at low tide. This is one of the three most common reef sharks in the Indo-Pacific, the two others are the grey reef shark, Carcharhinus amblyrhynchos and whitetip reef shark, Triaenodon obesus.
Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]
While scientists are still trying to determine exactly how many of theses species exist, we do know that many of these sharks lose their lives from getting caught in fishing nets. Not only does it significantly reduce their population, it compromises the fragile ecosystem around coral reefs. Many new laws and regulations are being put into place to protect this ever important fish.
The Caribbean Reef Shark also finds its food in the reefs such as bony fishes, large crustaceans and cephalopods. This shark is also known to feed on yellow sting-rays and eagle rays quite frequently. A unique feature of these predators is that they are capable of reverting or purging their own stomachs. This helps purge the parasites, mucus or any other objects on the stomach lining.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×