Off Enewetak, grey reef sharks exhibit different social behaviors on different parts of the reef. Sharks tend to be solitary on shallower reefs and pinnacles. Near reef drop-offs, loose aggregations of five to 20 sharks form in the morning and grow in number throughout the day before dispersing at night. In level areas, sharks form polarized schools (all swimming in the same direction) of around 30 individuals near the sea bottom, arranging themselves parallel to each other or slowly swimming in circles. Most individuals within polarized schools are females, and the formation of these schools has been theorized to relate to mating or pupping.[25][26]
Are there so few reef sharks because of human activities such as fishing and finning, or were there never very many to start with? To answer this question, a team of marine biologists (which did not include Friedlander) decided to count reef sharks at coral reefs close and far to human settlements to better understand how humans impact their populations.
Founded in 1996, the Reef Check Foundation exists to help preserve the oceans and reefs which are critical to our survival, yet are being destroyed. With headquarters in Los Angeles and volunteer teams in more than 90 countries and territories, Reef Check works to protect tropical coral reefs and California rocky reefs through education, research and conservation.
Although they only grow to about 1.6 to 3 meters (5 to 10 feet) in length, these sharks are the apex predators on the very delicate coral reefs. That means, around coral reefs, they are the top of the food chain. The significants of this goes largely unnoticed, but theWorld Wildlife Fund has classified the Reef Shark as one of the most important species on the entire planet!
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]

Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.