Although they only grow to about 1.6 to 3 meters (5 to 10 feet) in length, these sharks are the apex predators on the very delicate coral reefs. That means, around coral reefs, they are the top of the food chain. The significants of this goes largely unnoticed, but theWorld Wildlife Fund has classified the Reef Shark as one of the most important species on the entire planet!
Another danger posed to humans by the Caribbean reef shark involves the accumulation of toxins in the flesh of the shark. Since sharks are apex marine predators, they may contain toxic levels of mercury and other heavy metals due to bioaccumulation (increasing concentrations at higher levels in the food web). It was found that methylmercury levels (MeHg) in sharks off the coast of Florida were higher than the FDA guidelines.

One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]
The grey reef shark is native to the Indian and Pacific Oceans. In the Indian Ocean, it occurs from South Africa to India, including Madagascar and nearby islands, the Red Sea, and the Maldives. In the Pacific Ocean, it is found from southern China to northern Australia and New Zealand, including the Gulf of Thailand, the Philippines, and Indonesia.[4][9] This species has also been reported from numerous Pacific islands, including American Samoa, the Chagos Archipelago, Easter Island, Christmas Island, the Cook Islands, the Marquesas Islands, the Tuamotu Archipelago, Guam, Kiribati, the Marshall Islands, Micronesia, Nauru, New Caledonia, the Marianas Islands, Palau, the Pitcairn Islands, Samoa, the Solomon Islands, Tuvalu, the Hawaiian Islands and Vanuatu.[1]
The Reef story started 25 years ago when two brothers from Argentina Fernando and Santiago Aguerre acted on an idea to produce high quality, comfortable yet stylish sandals. Inspired by their love of the California lifestyle and surfing culture, the brothers moved to California in the early 80's and found Reef sandals. With a tiny amount of start up capital of $4000 and after lots of hard work Reef is now widely considered to be the number one sandal brand in the world.
Socially, they are mostly loners unless living in a threatening ecosystem. These are the first and the only species of sharks that are known to “sleep” on the ocean floor or within reef caves. It is believed that these sharks are not actually sleeping but merely resting. These sharks have actually been given the nickname “sleeping sharks” because of their habit of lying motionless at the sea bottom. This is a somewhat unusual and unique behavior of these sharks.

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).