Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
Founded in 1996, the Reef Check Foundation exists to help preserve the oceans and reefs which are critical to our survival, yet are being destroyed. With headquarters in Los Angeles and volunteer teams in more than 90 countries and territories, Reef Check works to protect tropical coral reefs and California rocky reefs through education, research and conservation.

Adults begin to reproduce once they attain a size of 2 to 3 meters (female) or 1.5 to 1.7 meters (male). They reproduce once per year but childbirth is biennial since the females get pregnant every other year. The reproduction method is Viviparous which means the pups develop inside of the mother. There is evidence that the reproduction method is aggressive and violent since many female Caribbean Reef Sharks have been found with deep wounds on their sides during mating season. These wounds are caused by bites and heal in time leaving large and highly visible scars.

Although still abundant at Cocos Island and other relatively pristine sites, grey reef sharks are susceptible to localized depletion due to their slow reproductive rate, specific habitat requirements, and tendency to stay within a certain area. The IUCN has assessed the grey reef shark as Near Threatened; this shark is taken by multispecies fisheries in many parts of its range and used for various products such as shark fin soup and fishmeal.[2] Another threat is the continuing degradation of coral reefs from human development. There is evidence of substantial declines in some populations. Anderson et al. (1998) reported, in the Chagos Archipelago, grey reef shark numbers in 1996 had fallen to 14% of 1970s levels.[30] Robbins et al. (2006) found grey reef shark populations in Great Barrier Reef fishing zones had declined by 97% compared to no-entry zones (boats are not allowed). In addition, no-take zones (boats are allowed but fishing is prohibited) had the same levels of depletion as fishing zones, illustrating the severe effect of poaching. Projections suggested the shark population would fall to 0.1% of pre-exploitation levels within 20 years without additional conservation measures.[31] One possible avenue for conservation is ecotourism, as grey reef sharks are suitable for shark-watching ventures, and profitable diving sites now enjoy protection in many countries, such as the Maldives.[6]
WWF works to preserve the coral habitats where reef sharks live through the creation and improved management of marine protected areas, elaboration of fisheries management plans, and the introduction of fishing bans to protect vulnerable species including reef sharks. WWF also promoted the understanding that communities can derive more economic value from reef sharks through tourism than through their capture. We support local communities to set up appropriate ecotourism systems and infrastructure to ensure well-managed and sustainable shark tourism operations.
The Caribbean Reef Shark is known to be relatively passive and typically doesn’t pose much of a threat to scuba divers, snorklers, swimmers, or other humans it comes into contact with. They actually tend to avoid human interaction entirely. As per theInternational Shark Attack Files, there have been 27 attacks documented since 1960, of which none have been fatal. Of those attacks, it’s believe that 4 of them were caused because the shark mistakenly thought the person was a food source. The rest of the attacks were provoked attacks such as sharks caught in fishing equipment biting the fisherman.
Blowhole Cliffed coast Coastal biogeomorphology Coastal erosion Concordant coastline Current Cuspate foreland Discordant coastline Emergent coastline Feeder bluff Fetch Flat coast Graded shoreline Headlands and bays Ingression coast Large-scale coastal behaviour Longshore drift Marine regression Marine transgression Raised shoreline Rip current Rocky shore Sea cave Sea foam Shoal Steep coast Submergent coastline Surf break Surf zone Surge channel Swash Undertow Volcanic arc Wave-cut platform Wave shoaling Wind wave Wrack zone
×