Reef's twenty year heritage traces back to two brothers from Argentina, who acted on a simple idea to create a high quality, active lifestyle sandal. From this once modest beginning, the Reef brand and the line of Reef sandals has grown too be one of the largest sandal manufacturers in the world, the Universe actually, and has now evolved into a full fledged apparel brand.
My home in the coral reefs is being damaged by ocean acidification—which occurs when the ocean absorbs carbon and becomes acidified. I love living among thriving reefs, but increasing acidification degrades the physical structure of these reefs, putting my habitat and food supply at risk. This affects all the creatures living among the reef—not just my team of fellow blacktip reef sharks.
Although there are no active reef shark fisheries in the US Pacific, the reef sharks' disappearance could be caused by recreational fishing or illegal shark finning, which, combined, kill 26 million to 73 million sharks each year. Another possible explanation is that the reef sharks are starving. Their food sources, including coral reef fishes, are decreasing in number because of habitat destruction and human exploitation, and could be taking the sharks with them.

Although still abundant at Cocos Island and other relatively pristine sites, grey reef sharks are susceptible to localized depletion due to their slow reproductive rate, specific habitat requirements, and tendency to stay within a certain area. The IUCN has assessed the grey reef shark as Near Threatened; this shark is taken by multispecies fisheries in many parts of its range and used for various products such as shark fin soup and fishmeal.[2] Another threat is the continuing degradation of coral reefs from human development. There is evidence of substantial declines in some populations. Anderson et al. (1998) reported, in the Chagos Archipelago, grey reef shark numbers in 1996 had fallen to 14% of 1970s levels.[30] Robbins et al. (2006) found grey reef shark populations in Great Barrier Reef fishing zones had declined by 97% compared to no-entry zones (boats are not allowed). In addition, no-take zones (boats are allowed but fishing is prohibited) had the same levels of depletion as fishing zones, illustrating the severe effect of poaching. Projections suggested the shark population would fall to 0.1% of pre-exploitation levels within 20 years without additional conservation measures.[31] One possible avenue for conservation is ecotourism, as grey reef sharks are suitable for shark-watching ventures, and profitable diving sites now enjoy protection in many countries, such as the Maldives.[6]
Off Enewetak, grey reef sharks exhibit different social behaviors on different parts of the reef. Sharks tend to be solitary on shallower reefs and pinnacles. Near reef drop-offs, loose aggregations of five to 20 sharks form in the morning and grow in number throughout the day before dispersing at night. In level areas, sharks form polarized schools (all swimming in the same direction) of around 30 individuals near the sea bottom, arranging themselves parallel to each other or slowly swimming in circles. Most individuals within polarized schools are females, and the formation of these schools has been theorized to relate to mating or pupping.[25][26]
One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.