Reef Industries, Inc. is delighted to announce that November 2017 will mark the celebration of its 60th year in business. Founded in November 1957 by the late William D. Cameron, Reef Industries, Inc. was built on the foundation of being a reliable source of custom plastic laminate needs for our customers. Over the years, new technologies and innovations produced a variety of manufacturing techniques ultimately developing a wide range of products and material grades. With the introduction of these new product lines, the corporate identity of Reef Industries, Inc. was adopted in 1976. There is no time more fitting than now to thank our valued customers for their loyalty and support.
The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
The Caribbean reef shark occurs throughout the tropical western Atlantic Ocean, from North Carolina in the north to Brazil in the south, including Bermuda, the northern Gulf of Mexico, and the Caribbean Sea. However, it is extremely rare north of the Florida Keys. It prefers shallow waters on or around coral reefs, and is commonly found near the drop-offs at the reefs' outer edges.[4] This shark is most common in water shallower than 30 m (98 ft), but has been known to dive to 378 m (1,240 ft).[1]
The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:
But another potential cause is that these sharks are skittish around people. So when too many people move into the area, the reef sharks flee to other coral reefs. Indeed, the researchers found far more sharks at small, isolated reefs than they expected. But this in itself is a danger to the reef sharks. With so many sharks concentrated in a small area, “if you really wanted to, you could fish out a few hundred sharks very easily,” said Friedlander.
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.