Grey reef sharks are active at all times of the day, with activity levels peaking at night.[4] At Rangiroa, groups of around 30 sharks spend the day together in a small part of their collective home range, dispersing at night into shallower water to forage for food. Their home range is about 0.8 km2 (0.31 sq mi).[25] At Enewetak in the Marshall Islands, grey reef sharks from different parts of the reef exhibit different social and ranging behaviors. Sharks on the outer ocean reefs tend to be nomadic, swimming long distances along the reef, while those around lagoon reefs and underwater pinnacles stay within defined daytime and night-time home ranges.[26] Where there are strong tidal currents, grey reef sharks move against the water: towards the shore with the ebbing tide and back out to sea with the rising tide. This may allow them to better detect the scent of their prey, or afford them the cover of turbid water in which to hunt.[25]
There is little evidence of territoriality in the grey reef shark; individuals will tolerate others of their species entering and feeding within their home ranges.[27] Off Hawaii, individuals may stay around the same part of the reef for up to three years,[28] while at Rangiroa, they regularly shift their locations by up to 15 km (9.3 mi).[27] Individual grey reef sharks at Enewetak become highly aggressive at specific locations, suggesting they may exhibit dominant behavior over other sharks in their home areas.[3]
Like all sharks, the blacktip reef shark has exceptional sensory systems. From there keen sense of smell to having the ability to see in low light condition, these adaptation have made them prestige at tracking down there prey. Sharks also have an additional sixth sense where they can sense electromagnetic fields in the water. The ampullae of Lorenzini, located in the snout region, enable a shark to detect its prey without physically seeing it.

The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:


One of Bermuda’s favorites, the Reefs Resort and Club is a classic retreat tucked along the island’s celebrated South Shore. Family-owned and operated by the Dodwells, their passion for island living is reflected in the love guests have for the resort and how often they return. Named #1 in the region by Conde Nast readers, this inviting hideaway perfectly captures the essence of Bermuda and the cherished traditions that make it a mecca for families, honeymooners and golf enthusiasts.


Living in warm shallow waters often near coral reefs in the Western Atlantic, from Florida to Brazil, the Caribbean reef shark (Carcharhinus perezi) is the most abundant shark in the Caribbean. It feeds mostly on bony fishes and rarely attacks humans. Despite the shark's abundance in some regions, it has a high mortality rate from bycatch and is sought by commercial fisheries for its fins and meat. It is illegal to catch Caribbean reef sharks in U.S. waters. The International Union for the Conservation of Nature (IUCN) lists the species' status as "Near Threatened."
The Caribbean reef shark was originally described from off the coast of Cuba as Platypodon perezi by Poey in 1876. Bigelow and Schroeder later described the same species as Carcharhinus springeri in 1944 and the reef shark appears in much literature under this scientific name. The genus name Carcharhinus is derived from the Greek “karcharos” = sharpen and “rhinos” = nose. The currently accepted valid name is C. perezi (Poey 1876).

In California, Reef Check helps ensure the long-term sustainability and health of the nearshore rocky reefs and kelp forests. Reef Check California volunteers are divers, fishermen, kayakers, surfers, boaters, and a wide range of Californians who take a proactive role in making sure that our nearshore ecosystems are healthy and well managed. We monitor rocky reefs inside and outside of California's marine protected areas (MPAs). We work with marine managers, researchers and the public to provide the scientific data needed to make informed, science-based decisions for the sustainable management and conservation of California's ocean environment. We would love your support, volunteer today!

Every year, Reef Check trains thousands of citizen scientist divers who volunteer to survey the health of coral reefs around the world, and rocky reef ecosystems along the entire coast of California. The results are used to improve the management of these critically important natural resources. Reef Check programs provide ecologically sound and economically sustainable solutions to save reefs, by creating partnerships among community volunteers, government agencies, businesses, universities and other nonprofits.
Most observed displays by grey reef sharks have been in response to a diver (or submersible) approaching and following it from a few meters behind and above. They also perform the display towards moray eels, and in one instance towards a much larger great hammerhead (which subsequently withdrew). However, they have never been seen performing threat displays towards each other. This suggests the display is primarily a response to potential threats (i.e. predators) rather than competitors. As grey reef sharks are not territorial, they are speculated to be defending a critical volume of "personal space" around themselves. Compared to sharks from French Polynesia or Micronesia, grey reef sharks from the Indian Ocean and western Pacific are not as aggressive and less given to displaying.[3]
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
×