Living in warm shallow waters often near coral reefs in the Western Atlantic, from Florida to Brazil, the Caribbean reef shark (Carcharhinus perezi) is the most abundant shark in the Caribbean. It feeds mostly on bony fishes and rarely attacks humans. Despite the shark's abundance in some regions, it has a high mortality rate from bycatch and is sought by commercial fisheries for its fins and meat. It is illegal to catch Caribbean reef sharks in U.S. waters. The International Union for the Conservation of Nature (IUCN) lists the species' status as "Near Threatened."
Based on morphological similarities, Jack Garrick in 1982 grouped this species with the bignose shark (C. altimus) and the sandbar shark (C. plumbeus), while Leonard Compagno in 1988 placed it as the sister species of the grey reef shark (C. amblyrhynchos). A phylogenetic analysis based on allozyme data, published by Gavin Naylor in 1992, indicated that the Caribbean reef shark is the sister taxon to a clade formed by the Galapagos shark (C. galapagensis), dusky shark (C. obscurus), oceanic whitetip shark (C. longimanus), and the blue shark (Prionace glauca). However, more work is required to fully resolve the interrelationships within Carcharhinus.[3]

Blacktip reef sharks, Carcharhinus melanopterus (Quoy and Gaimard, 1824), are small sharks measuring up to 1.8 m with short, bluntly-rounded snouts, oval eyes, and narrow-cusped teeth. They have 2 dorsal fins and no interdorsal ridges. Juveniles (< 70 cm) are yellow-brown on their dorsal (upper) sides, white on their ventral (under) sides; adults are brownish-gray and white, respectively. All their fins have conspicuous black or dark brown tips, and posterior (rear) dark edges on their pectoral fins and their upper lobe of their caudal (tail) fins. The prominent black tips of their first dorsal fin contrasts with a light band below it; a conspicuous dark band on their flanks which extends to their pelvic fins. Maximum weight: 24 kg; frequents depth ranges from the surface to 75 m.
Reef™ has the uncanny ability to mix fashion with beach life. Reef™ sandals and reef flip-flops are comfortable and supportive. One of their most popular sandals, the Reef™ J-Bay sandal, mixes recycled material with soft leather (with environmentally responsible production as opposed to toxic leather tanning) to give you comfort and a clean conscience. The Reef™ bikinis are flirty and cute with all the right ruffles, colors and tassels. Reef™ elevates its 2014 swimwear collection taking the Reef™ girl on a trip around the world. Its ‘Just Passing Through’ inspired line includes tribal prints, crochet pieces, and attention to detail. 2014 focuses on lush pink and blue water shades with tons of ethnic infused prints. Its extension of silhouettes goes from the traditional string bikini incorporating a basic solid color palette to the perfectly designed bralette for fashionable beach goer.
Dutch ichthyologist Pieter Bleeker first described the grey reef shark in 1856 as Carcharias (Prionodon) amblyrhynchos, in the scientific journal Natuurkundig Tijdschrift voor Nederlandsch-Indië. Later authors moved this species to the genus Carcharhinus. The type specimen was a 1.5 metres (4.9 ft)-long female from the Java Sea.[4] Other common names used for this shark around the world include black-vee whaler, bronze whaler, Fowler's whaler shark, graceful shark, graceful whaler shark, grey shark, grey whaler shark, longnose blacktail shark, school shark, and shortnose blacktail shark. Some of these names are also applied to other species.[2]
Blowhole Cliffed coast Coastal biogeomorphology Coastal erosion Concordant coastline Current Cuspate foreland Discordant coastline Emergent coastline Feeder bluff Fetch Flat coast Graded shoreline Headlands and bays Ingression coast Large-scale coastal behaviour Longshore drift Marine regression Marine transgression Raised shoreline Rip current Rocky shore Sea cave Sea foam Shoal Steep coast Submergent coastline Surf break Surf zone Surge channel Swash Undertow Volcanic arc Wave-cut platform Wave shoaling Wind wave Wrack zone
Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×