Blacktip reef sharks, Carcharhinus melanopterus (Quoy and Gaimard, 1824), are small sharks measuring up to 1.8 m with short, bluntly-rounded snouts, oval eyes, and narrow-cusped teeth. They have 2 dorsal fins and no interdorsal ridges. Juveniles (< 70 cm) are yellow-brown on their dorsal (upper) sides, white on their ventral (under) sides; adults are brownish-gray and white, respectively. All their fins have conspicuous black or dark brown tips, and posterior (rear) dark edges on their pectoral fins and their upper lobe of their caudal (tail) fins. The prominent black tips of their first dorsal fin contrasts with a light band below it; a conspicuous dark band on their flanks which extends to their pelvic fins. Maximum weight: 24 kg; frequents depth ranges from the surface to 75 m.
The Caribbean reef shark is found throughout tropical waters, particularly in the Caribbean Sea. This shark’s range includes Florida, Bermuda, the northern Gulf of Mexico, Yucatan, Cuba, Jamaica, Bahamas, Mexico, Puerto Rico, Colombia, Venezuela, and Brazil. It is one of the most abundant sharks around the Bahamas and the Antilles. Although Caribbean reef sharks are found near reefs in southern Florida, surveys using long-line gear off the east coast of Florida reveal that Caribbean reef sharks are extremely rare north of the Florida Keys.
Tax-deductible donations made to Tetiaroa Society help fund critical conservation efforts, scientific research being conducted at our Ecostation, and education programs for the local schools. Your contribution also helps us advance what we are doing on Tetiaroa as a model for island/earth sustainability. We deeply appreciate your generosity and look forward to sharing our progress with you.
Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
Are there so few reef sharks because of human activities such as fishing and finning, or were there never very many to start with? To answer this question, a team of marine biologists (which did not include Friedlander) decided to count reef sharks at coral reefs close and far to human settlements to better understand how humans impact their populations.

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×