The International Union for Conservation of Nature (IUCN) has assessed the Caribbean reef shark as Near Threatened; its population has declined off Belize and Cuba from overfishing and exploitation continues in other regions. They are also threatened by the degradation and destruction of their coral reef habitat.[1] Commercial fishing for this species is prohibited in United States waters.[4] They are protected in the Bahamas due to their significance to ecotourism, as well as in a number of Marine Protected Areas (MPAs) off Brazil and elsewhere. However, enforcement against illegal fishing is lacking in some of these reserves, and many areas in which this species is abundant are not protected.[1]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
A heavy-bodied shark with a "typical" streamlined shape, the Caribbean reef shark is difficult to distinguish from other large requiem shark species. It usually measures 2–2.5 m (6.6–8.2 ft) long; the maximum recorded length is 3 m (9.8 ft) and the maximum reported weight is 70 kg (150 lb).[5][6] The coloration is dark gray or gray-brown above and white or white-yellow below, with an inconspicuous white band on the flanks. The fins are not prominently marked, and the undersides of the paired fins, the anal fin, and the lower lobe of the caudal fin are dusky.[2][4]

Reef sandals have always blended the cool kids and casual dude attitude of the beach with a commitment to nurturing the lifestyle that follows. Reef is further defined by the elite class of athletes that represent Reef around the world, as well as their loyal base of Reef aficionados who identify with Reef's unique blend of surf, sensuality and irreverent sensibility. Yes, all of those words. At the core of the Reef sandals are authentic, stylish and comfort designed products that have been worn by millions of Reefers around the world since Reef originated in 1984.

Although there are no active reef shark fisheries in the US Pacific, the reef sharks' disappearance could be caused by recreational fishing or illegal shark finning, which, combined, kill 26 million to 73 million sharks each year. Another possible explanation is that the reef sharks are starving. Their food sources, including coral reef fishes, are decreasing in number because of habitat destruction and human exploitation, and could be taking the sharks with them.


The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]


The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]


One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
×