The Caribbean reef shark is the most common shark on or near coral reefs in the Caribbean. It is a tropical inshore, bottom-dwelling species of the continental and insular shelves. Although C. perezi mainly inhabits shallow waters, it has been recorded to reach depths to at least 98 feet (30 m). Caribbean reef sharks are commonly found close to drop-offs on the outer edges of coral reefs and also may lie motionless on the bottom of the ocean floor. This phenomenon has also been observed in caves off the coast of Mexico and off the Brazilian archipelago of Fernando de Noronha.
Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]
Blacktip reef sharks are regularly caught by inshore fisheries and are vulnerable to depletion because of their small litter sizes and long gestation periods. Traumatogenic. May become aggressive to spear fishers and are reported to bite people wading in shallow water. Generally marketed fresh (as fillet), may be dried, salted, smoked or frozen. Fins are valued for shark-fin soup; a market that is decimating shark populations worldwide. They are also sought for their liver as source of oil.
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
The grey reef shark has a streamlined, moderately stout body with a long, blunt snout and large, round eyes. The upper and lower jaws each have 13 or 14 teeth (usually 14 in the upper and 13 in the lower). The upper teeth are triangular with slanted cusps, while the bottom teeth have narrower, erect cusps. The tooth serrations are larger in the upper jaw than in the lower. The first dorsal fin is medium-sized, and there is no ridge running between it and the second dorsal fin. The pectoral fins are narrow and falcate (sickle-shaped).[4]
My home in the coral reefs is being damaged by ocean acidification—which occurs when the ocean absorbs carbon and becomes acidified. I love living among thriving reefs, but increasing acidification degrades the physical structure of these reefs, putting my habitat and food supply at risk. This affects all the creatures living among the reef—not just my team of fellow blacktip reef sharks.
Grey reef sharks are often curious about divers when they first enter the water and may approach quite closely, though they lose interest on repeat dives.[4] They can become dangerous in the presence of food, and tend to be more aggressive if encountered in open water rather than on the reef.[13] There have been several known attacks on spearfishers, possibly by mistake, when the shark struck at the speared fish close to the diver. This species will also attack if pursued or cornered, and divers should immediately retreat (slowly and always facing the shark) if it begins to perform a threat display.[4] Photographing the display should not be attempted, as the flash from a camera is known to have incited at least one attack.[3] Although of modest size, they are capable of inflicting significant damage: during one study of the threat display, a grey reef shark attacked the researchers' submersible multiple times, leaving tooth marks in the plastic windows and biting off one of the propellers. The shark consistently launched its attacks from a distance of 6 m (20 ft), which it was able to cover in a third of a second.[14] As of 2008, the International Shark Attack File listed seven unprovoked and six provoked attacks (none of them fatal) attributable to this species.[29]
Blacktip reef sharks are viviparous with a yolk-sac placenta, with a gestation period about 10 months and litter size of 2-4 pups. Size at birth ranges from 33-52 cm. Males mature at about eight years of age and 95-105 cm in length; females mature at about 9 years old and a length of 93-110 cm. Courtship features the one or more males following closely behind a female. Reproductive behavior includes distinct pairing with embrace where the male grasps the female’s pectoral fin between his teeth and mates belly to belly. There is one breeding season in the central and western Pacific, but two seasons in the Indian Ocean. Females rest for 8-14 month between pregnancies to rebuild their energy stores. Blacktip reef sharks are preyed upon by other sharks and large groupers. The is a socially complex species that performs a variety of group behaviors.

The Caribbean Reef Shark also finds its food in the reefs such as bony fishes, large crustaceans and cephalopods. This shark is also known to feed on yellow sting-rays and eagle rays quite frequently. A unique feature of these predators is that they are capable of reverting or purging their own stomachs. This helps purge the parasites, mucus or any other objects on the stomach lining.
The Caribbean reef shark infrequently attacks humans. In general, a shark attack on a human is behaviorally similar to an attack upon natural prey. A human is more susceptible to being attacked if the shark is cornered and feels that there is no escape route. In situations like these, the shark may rake the victim during the attack resulting in lacerations.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×