Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]

The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:
The Caribbean reef shark is the most common shark on or near coral reefs in the Caribbean. It is a tropical inshore, bottom-dwelling species of the continental and insular shelves. Although C. perezi mainly inhabits shallow waters, it has been recorded to reach depths to at least 98 feet (30 m). Caribbean reef sharks are commonly found close to drop-offs on the outer edges of coral reefs and also may lie motionless on the bottom of the ocean floor. This phenomenon has also been observed in caves off the coast of Mexico and off the Brazilian archipelago of Fernando de Noronha.
The Caribbean reef shark is found throughout tropical waters, particularly in the Caribbean Sea. This shark’s range includes Florida, Bermuda, the northern Gulf of Mexico, Yucatan, Cuba, Jamaica, Bahamas, Mexico, Puerto Rico, Colombia, Venezuela, and Brazil. It is one of the most abundant sharks around the Bahamas and the Antilles. Although Caribbean reef sharks are found near reefs in southern Florida, surveys using long-line gear off the east coast of Florida reveal that Caribbean reef sharks are extremely rare north of the Florida Keys.
This species is taken by commercial and artisanal longline and gillnet fisheries throughout its range. It is valued for meat, leather, liver oil and fishmeal. The Caribbean reef shark is the most common shark landed in Colombia (accounting for 39% of the longline catch by occurrence), where it is utilized for its fins, oil and jaws (sold for ornamental purposes). In Belize, this species is mainly caught as bycatch on hook-and-line intended for groupers and snappers; the fins are sold to the lucrative Asian market and the meat sold in Belize, Mexico, and Guatemala to make "panades", a tortilla-like confection. A dedicated shark fishery operated in Belize from the mid-1900s to the early 1990s, until catches of all species saw dramatic declines.[1] The flesh of this species may contain high levels of methylmercury and other heavy metals.[4]
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
×