Like many sharks, the Caribbean reef shark mainly eats bony fishes. The shark uses six keen senses to locate its prey: olfactory, visual, tactile (including water vibration sensitivity through a lateralis canal system), auditory, gustatory, and electric reception. The Caribbean reef shark is especially adapted to detecting low frequency sounds (indicative of a struggling fish nearby).
$eaworld biodiversity bluefin tuna Climate Change clownfish coral reefs crabs cuttlefishes deep sea dolphins endangered extinction fins fishes frogfishes ghost pipefish global warming Indonesia jellyfish mantas mantis shrimp marine biology Marine Conservation Marine Mammals Marine Protected Areas Marine Science morays nudibranchs octopuses oil spill orca overfishing Papua New Guinea phytoplankton plastics polar bears pollution scuba seafood sea horses sea level rise sea turtles sharks shrimp whales
This species is commonly found in shallow waters on and near coral reefs and occasionally in brackish waters. Juveniles are typically found in extremely shallow water (±15 to 100 cm) inside lagoons, often swimming along the shoreline; adults typically occur on shallow parts of the forereef, often moving over the reef crest and onto the reef flat at flood tide. Individual adults inhabit a relatively small home range of ±2.5 km2 and appear to reside close to their home reef but occasionally cross deepwater channels between adjacent reefs.
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
Investing in oil and gas is speculative and involves a high degree of risk. There is no guarantee that any returns on investment will be achieved. Investors could lose all or substantially all of their investment. The content provided on this site is for information purposes only and is not a solicitation to buy or an offer to sell any securities. The general information on this site is not intended to be used as individual investment or tax advice. Potential investors should consult their personal tax advisor, attorney, accountant, and financial advisor before investing in oil and gas.
Along with the blacktip reef shark (C. melanopterus) and the whitetip reef shark (Triaenodon obesus), the grey reef shark is one of the three most common sharks inhabiting Indo-Pacific reefs. They actively expel most other shark species from favored habitats, even species larger in size.[3] In areas where this species co-exists with the blacktip reef shark, the latter species occupies the shallow flats, while the former stays in deeper water.[4] Areas with a high abundance of grey reef sharks tend to contain few sandbar sharks (C. plumbeus), and vice versa; this may be due to their similar diets causing competitive exclusion.[11]

Measuring up to 3 m (9.8 ft) long, the Caribbean reef shark is one of the largest apex predators in the reef ecosystem, feeding on a variety of fishes and cephalopods. They have been documented resting motionless on the sea bottom or inside caves, unusual behavior for an active-swimming shark. If threatened, it may perform a threat display in which it frequently changes direction and dips its pectoral fins. Like other requiem sharks, it is viviparous with females giving birth to 4–6 young every other year. Caribbean reef sharks are of some importance to fisheries as a source of meat, leather, liver oil, and fishmeal, but recently they have become more valuable as an ecotourist attraction. In the Bahamas and elsewhere, bait is used to attract them to groups of divers in controversial "shark feedings". This species is responsible for a small number of attacks on humans. The shark attacks usually happen in spring and summer.


Social aggregation is well documented in grey reef sharks. In the northwestern Hawaiian Islands, large numbers of pregnant adult females have been observed slowly swimming in circles in shallow water, occasionally exposing their dorsal fins or backs. These groups last from 11:00 to 15:00, corresponding to peak daylight hours.[28] Similarly, at Sand Island off Johnston Atoll, females form aggregations in shallow water from March to June. The number of sharks per group differs from year to year. Each day, the sharks begin arriving at the aggregation area at 09:00, reaching a peak in numbers during the hottest part of the day in the afternoon, and dispersing by 19:00. Individual sharks return to the aggregation site every one to six days. These female sharks are speculated to be taking advantage of the warmer water to speed their growth or that of their embryos. The shallow waters may also enable them to avoid unwanted attention by males.[10]
Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]
Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]

Although still abundant at Cocos Island and other relatively pristine sites, grey reef sharks are susceptible to localized depletion due to their slow reproductive rate, specific habitat requirements, and tendency to stay within a certain area. The IUCN has assessed the grey reef shark as Near Threatened; this shark is taken by multispecies fisheries in many parts of its range and used for various products such as shark fin soup and fishmeal.[2] Another threat is the continuing degradation of coral reefs from human development. There is evidence of substantial declines in some populations. Anderson et al. (1998) reported, in the Chagos Archipelago, grey reef shark numbers in 1996 had fallen to 14% of 1970s levels.[30] Robbins et al. (2006) found grey reef shark populations in Great Barrier Reef fishing zones had declined by 97% compared to no-entry zones (boats are not allowed). In addition, no-take zones (boats are allowed but fishing is prohibited) had the same levels of depletion as fishing zones, illustrating the severe effect of poaching. Projections suggested the shark population would fall to 0.1% of pre-exploitation levels within 20 years without additional conservation measures.[31] One possible avenue for conservation is ecotourism, as grey reef sharks are suitable for shark-watching ventures, and profitable diving sites now enjoy protection in many countries, such as the Maldives.[6]
During mating, the male grey reef shark will bite at the female's body or fins to hold onto her for copulation.[13] Like other requiem sharks, it is viviparous: once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection that sustains them to term. Each female has a single functional ovary (on the right side) and two functional uteruses. One to four pups (six in Hawaii) are born every other year; the number of young increases with female size. Estimates of the gestation period range from 9 to 14 months. Parturition is thought to take place from July to August in the Southern Hemisphere and from March to July in the Northern Hemisphere. However, females with "full-term embryos" have also been reported in the fall off Enewetak. The newborns measure 45–60 cm (18–24 in) long. Sexual maturation occurs at around seven years of age, when the males are 1.3–1.5 m (4.3–4.9 ft) long and females are 1.2–1.4 m (3.9–4.6 ft) long. Females on the Great Barrier Reef mature at 11 years of age, later than at other locations, and at a slightly larger size. The lifespan is at least 25 years.[4][20][24]
Typically a solitary animal, juvenile blacktip reef sharks will commonly conjugate in shallow regions during high tide. Vulnerable to larger predators, they will reside in shallower areas until larger in size. Blacktip reef sharks tend to be more active during dawn and dusk, but like most sharks they are opportunistic feeders. Their diet consists of crustaceans, squid, octopus, and bony fish.
The Caribbean Reef Shark is known to be relatively passive and typically doesn’t pose much of a threat to scuba divers, snorklers, swimmers, or other humans it comes into contact with. They actually tend to avoid human interaction entirely. As per theInternational Shark Attack Files, there have been 27 attacks documented since 1960, of which none have been fatal. Of those attacks, it’s believe that 4 of them were caused because the shark mistakenly thought the person was a food source. The rest of the attacks were provoked attacks such as sharks caught in fishing equipment biting the fisherman.
The grey reef shark has a streamlined, moderately stout body with a long, blunt snout and large, round eyes. The upper and lower jaws each have 13 or 14 teeth (usually 14 in the upper and 13 in the lower). The upper teeth are triangular with slanted cusps, while the bottom teeth have narrower, erect cusps. The tooth serrations are larger in the upper jaw than in the lower. The first dorsal fin is medium-sized, and there is no ridge running between it and the second dorsal fin. The pectoral fins are narrow and falcate (sickle-shaped).[4]

$eaworld biodiversity bluefin tuna Climate Change clownfish coral reefs crabs cuttlefishes deep sea dolphins endangered extinction fins fishes frogfishes ghost pipefish global warming Indonesia jellyfish mantas mantis shrimp marine biology Marine Conservation Marine Mammals Marine Protected Areas Marine Science morays nudibranchs octopuses oil spill orca overfishing Papua New Guinea phytoplankton plastics polar bears pollution scuba seafood sea horses sea level rise sea turtles sharks shrimp whales

The Reef story started 25 years ago when two brothers from Argentina Fernando and Santiago Aguerre acted on an idea to produce high quality, comfortable yet stylish sandals. Inspired by their love of the California lifestyle and surfing culture, the brothers moved to California in the early 80's and found Reef sandals. With a tiny amount of start up capital of $4000 and after lots of hard work Reef is now widely considered to be the number one sandal brand in the world.

Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.

×