One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
Reef Surf Sandals Ginger 30 yrs Brand New with tags Size: 10 Description Celebrating 30 years of Reef! The Ginger 30 is Soft,and narrow, with a woven polyester strap, Reef-flex triple density EVA construction with anatomical arch support, and has a Durable, high density EVA outsole. Specifications Key Features of the Reef Ginger 30 Years Sandals: Celebrating 30 Years Of Reef ! Soft , Narrow, Woven Polyester Strap Reef -Flex Triple Density Eva Construction With Anatomical Arch Support Durable , High Density Eva Outsole
Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]
Off Enewetak, grey reef sharks exhibit different social behaviors on different parts of the reef. Sharks tend to be solitary on shallower reefs and pinnacles. Near reef drop-offs, loose aggregations of five to 20 sharks form in the morning and grow in number throughout the day before dispersing at night. In level areas, sharks form polarized schools (all swimming in the same direction) of around 30 individuals near the sea bottom, arranging themselves parallel to each other or slowly swimming in circles. Most individuals within polarized schools are females, and the formation of these schools has been theorized to relate to mating or pupping.[25][26]
During mating, the male grey reef shark will bite at the female's body or fins to hold onto her for copulation.[13] Like other requiem sharks, it is viviparous: once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection that sustains them to term. Each female has a single functional ovary (on the right side) and two functional uteruses. One to four pups (six in Hawaii) are born every other year; the number of young increases with female size. Estimates of the gestation period range from 9 to 14 months. Parturition is thought to take place from July to August in the Southern Hemisphere and from March to July in the Northern Hemisphere. However, females with "full-term embryos" have also been reported in the fall off Enewetak. The newborns measure 45–60 cm (18–24 in) long. Sexual maturation occurs at around seven years of age, when the males are 1.3–1.5 m (4.3–4.9 ft) long and females are 1.2–1.4 m (3.9–4.6 ft) long. Females on the Great Barrier Reef mature at 11 years of age, later than at other locations, and at a slightly larger size. The lifespan is at least 25 years.[4][20][24]
Reef Industries, Inc. is delighted to announce that November 2017 will mark the celebration of its 60th year in business. Founded in November 1957 by the late William D. Cameron, Reef Industries, Inc. was built on the foundation of being a reliable source of custom plastic laminate needs for our customers. Over the years, new technologies and innovations produced a variety of manufacturing techniques ultimately developing a wide range of products and material grades. With the introduction of these new product lines, the corporate identity of Reef Industries, Inc. was adopted in 1976. There is no time more fitting than now to thank our valued customers for their loyalty and support.

WWF works to preserve the coral habitats where reef sharks live through the creation and improved management of marine protected areas, elaboration of fisheries management plans, and the introduction of fishing bans to protect vulnerable species including reef sharks. WWF also promoted the understanding that communities can derive more economic value from reef sharks through tourism than through their capture. We support local communities to set up appropriate ecotourism systems and infrastructure to ensure well-managed and sustainable shark tourism operations.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).