Although still abundant at Cocos Island and other relatively pristine sites, grey reef sharks are susceptible to localized depletion due to their slow reproductive rate, specific habitat requirements, and tendency to stay within a certain area. The IUCN has assessed the grey reef shark as Near Threatened; this shark is taken by multispecies fisheries in many parts of its range and used for various products such as shark fin soup and fishmeal.[2] Another threat is the continuing degradation of coral reefs from human development. There is evidence of substantial declines in some populations. Anderson et al. (1998) reported, in the Chagos Archipelago, grey reef shark numbers in 1996 had fallen to 14% of 1970s levels.[30] Robbins et al. (2006) found grey reef shark populations in Great Barrier Reef fishing zones had declined by 97% compared to no-entry zones (boats are not allowed). In addition, no-take zones (boats are allowed but fishing is prohibited) had the same levels of depletion as fishing zones, illustrating the severe effect of poaching. Projections suggested the shark population would fall to 0.1% of pre-exploitation levels within 20 years without additional conservation measures.[31] One possible avenue for conservation is ecotourism, as grey reef sharks are suitable for shark-watching ventures, and profitable diving sites now enjoy protection in many countries, such as the Maldives.[6]

The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
The Black-tip Shark (Carcharhinus melanopterus) is a species of shark of the family Carcharhinidae, easily identified by the black tips of its fins, especially on the first dorsal fin and the caudal fin. It is one of the most abundant sharks in the tropical coral reefs of the Indian Ocean and Pacific Ocean. This species prefers shallow coastal waters and frequently exposes its first dorsal fin in these areas. Most Black-tipped Sharks live on reef margins and sandy bottoms, but they are also known to support brackish or freshwater environments. This species generally reaches a length of 1.6 m. Black-tip Sharks are sedentary and live in very small areas and may remain in the same area for several years. They are active predators of small bone fish, cephalopods and crustaceans, and are also known to feed on marine snakes and seabirds. The data collected concerning the life cycle of the Black-tip Shark are sometimes contradictory and there appear to be significant differences depending on the geographical location within the range of the species. Like other members of its family, this shark is viviparous and females give birth to between two and five young babies every two years, every year or sometimes twice a year. Indeed, according to its habitat the gestation period of this shark can be 7-9 months, 10-11 months or 16 months. Newborns live in coastal waters and in shallower waters than adults, often forming large groups in areas flooded by high tides. Shy and capricious, the Black-tip Shark is difficult to approach and rarely represents a danger to humans, unless it is excited by food. However, bathers in shallow waters can sometimes have their legs bitten by mistake. This shark is fished for its meat, fins and liver oil, but is not considered to be a commercially important species. The International Union for Conservation of Nature assessed the near threatened species. Although the species as a whole remains widespread and relatively common, overfishing of this shark and its slow rate of reproduction has led to its decline in a number of localities.
Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]
The Caribbean Reef Shark also finds its food in the reefs such as bony fishes, large crustaceans and cephalopods. This shark is also known to feed on yellow sting-rays and eagle rays quite frequently. A unique feature of these predators is that they are capable of reverting or purging their own stomachs. This helps purge the parasites, mucus or any other objects on the stomach lining.

A heavy-bodied shark with a "typical" streamlined shape, the Caribbean reef shark is difficult to distinguish from other large requiem shark species. It usually measures 2–2.5 m (6.6–8.2 ft) long; the maximum recorded length is 3 m (9.8 ft) and the maximum reported weight is 70 kg (150 lb).[5][6] The coloration is dark gray or gray-brown above and white or white-yellow below, with an inconspicuous white band on the flanks. The fins are not prominently marked, and the undersides of the paired fins, the anal fin, and the lower lobe of the caudal fin are dusky.[2][4]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×