Are there so few reef sharks because of human activities such as fishing and finning, or were there never very many to start with? To answer this question, a team of marine biologists (which did not include Friedlander) decided to count reef sharks at coral reefs close and far to human settlements to better understand how humans impact their populations.
Blacktip reef sharks are fast, pursuit predators that prefer reef fishes, but also feeds on stingrays, crabs, mantis shrimps and other crustaceans, cephalopods, and other mollusks. In the Maldives, this species has been documented feeding cooperatively on small schooling fishes, herding them against the shore and feeding en masse. Feeds heavily on sea snakes in northern Australia. A large individual (1.6 m) was observed attacking a green sea turtle, Chelonia mydas, in North Male’ Atoll, Maldives.
A profitable ecotourism industry has arisen around this species involving organized "shark feeds", in which groups of reef sharks are attracted to divers using bait. Some US$6,000,000 is spent annually on shark viewing in the Bahamas, where at some sites a single living Caribbean reef shark has a value between US$13,000 and US$40,000 (compared to a one-time value of US$50–60 for a dead shark).[14] This practice has drawn controversy, as opponents argue that the sharks may learn to associate humans with food, increasing the chances of a shark attack, and that the removal of reef fishes for bait may damage the local ecosystem. Conversely, proponents maintain that shark feeds contribute to conservation by incentivizing the protection of sharks and educating people about them. Thus far, there has been little evidence that shark feeds have increased the risk of attack in the surrounding area.[8][15] Shark feeding has been outlawed off the coast of Florida, but continues at other locations in the Caribbean.[4]
In older literature, the scientific name of this species was often given as C. menisorrah.[5] The blacktail reef shark (C. wheeleri), native to the western Indian Ocean, is now regarded as the same species as the grey reef shark by most authors. It was originally distinguished from the grey reef shark by a white tip on the first dorsal fin, a shorter snout, and one fewer upper tooth row on each side.[6] Based on morphological characters, vertebral counts, and tooth shapes, Garrick (1982) concluded the grey reef shark is most closely related to the silvertip shark (C. albimarginatus).[7] This interpretation was supported by a 1992 allozyme phylogenetic analysis by Lavery.[8]
The Caribbean reef shark occurs throughout the tropical western Atlantic Ocean, from North Carolina in the north to Brazil in the south, including Bermuda, the northern Gulf of Mexico, and the Caribbean Sea. However, it is extremely rare north of the Florida Keys. It prefers shallow waters on or around coral reefs, and is commonly found near the drop-offs at the reefs' outer edges.[4] This shark is most common in water shallower than 30 m (98 ft), but has been known to dive to 378 m (1,240 ft).[1]

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×