Reef's twenty year heritage traces back to two brothers from Argentina, who acted on a simple idea to create a high quality, active lifestyle sandal. From this once modest beginning, the Reef brand and the line of Reef sandals has grown too be one of the largest sandal manufacturers in the world, the Universe actually, and has now evolved into a full fledged apparel brand.
Anchialine pool Archipelago Atoll Avulsion Ayre Barrier island Bay Baymouth bar Bight Bodden Brackish marsh Cape Channel Cliff Coast Coastal plain Coastal waterfall Continental margin Continental shelf Coral reef Cove Dune cliff-top Estuary Firth Fjard Fjord Förde Freshwater marsh Fundus Gat Geo Gulf Gut Headland Inlet Intertidal wetland Island Islet Isthmus Lagoon Machair Marine terrace Mega delta Mouth bar Mudflat Natural arch Peninsula Reef Regressive delta Ria River delta Salt marsh Shoal Shore Skerry Sound Spit Stack Strait Strand plain Submarine canyon Tidal island Tidal marsh Tide pool Tied island Tombolo Windwatt
Reproduction is viviparous; once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection through which they receive nourishment from their mother. Mating is apparently an aggressive affair, as females are often found with biting scars and wounds on their sides.[4] At the Fernando de Noronha Archipelago and Atol das Rocas off Brazil, parturition takes place at the end of the dry season from February to April, while at other locations in the Southern Hemisphere, females give birth during the Amazon summer in November and December.[4][12] The average litter size is four to six, with a gestation period of one year. Females become pregnant every other year.[8] The newborns measure no more than 74 cm (29 in) long; males mature sexually at 1.5–1.7 m (59–67 in) long and females at 2–3 m (79–118 in).[4]
During mating, the male grey reef shark will bite at the female's body or fins to hold onto her for copulation.[13] Like other requiem sharks, it is viviparous: once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection that sustains them to term. Each female has a single functional ovary (on the right side) and two functional uteruses. One to four pups (six in Hawaii) are born every other year; the number of young increases with female size. Estimates of the gestation period range from 9 to 14 months. Parturition is thought to take place from July to August in the Southern Hemisphere and from March to July in the Northern Hemisphere. However, females with "full-term embryos" have also been reported in the fall off Enewetak. The newborns measure 45–60 cm (18–24 in) long. Sexual maturation occurs at around seven years of age, when the males are 1.3–1.5 m (4.3–4.9 ft) long and females are 1.2–1.4 m (3.9–4.6 ft) long. Females on the Great Barrier Reef mature at 11 years of age, later than at other locations, and at a slightly larger size. The lifespan is at least 25 years.[4][20][24]
The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
Caribbean reef sharks are sometimes seen resting motionless on the sea floor or inside caves; it is the first active shark species in which such a behavior was reported. In 1975, Eugenie Clark investigated the famed "sleeping sharks" inside the caves at Isla Mujeres off the Yucatan Peninsula, and determined that the sharks were not actually asleep as their eyes would follow divers. Clark speculated that freshwater upwellings inside the caves might loosen parasites on the sharks and produce an enjoyable "narcotic" effect.[8] If threatened, Caribbean reef sharks sometimes perform a threat display, in which they swim in a short, jerky fashion with frequent changes in direction and repeated, brief (1–1.2 second duration) drops of the pectoral fins. This display is less pronounced than the better-known display of the grey reef shark (C. amblyrhynchos).[8][9]
Are there so few reef sharks because of human activities such as fishing and finning, or were there never very many to start with? To answer this question, a team of marine biologists (which did not include Friedlander) decided to count reef sharks at coral reefs close and far to human settlements to better understand how humans impact their populations.

The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]
Like many sharks, the Caribbean reef shark mainly eats bony fishes. The shark uses six keen senses to locate its prey: olfactory, visual, tactile (including water vibration sensitivity through a lateralis canal system), auditory, gustatory, and electric reception. The Caribbean reef shark is especially adapted to detecting low frequency sounds (indicative of a struggling fish nearby).
While scientists are still trying to determine exactly how many of theses species exist, we do know that many of these sharks lose their lives from getting caught in fishing nets. Not only does it significantly reduce their population, it compromises the fragile ecosystem around coral reefs. Many new laws and regulations are being put into place to protect this ever important fish.
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).