Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
^ Garla, R.C.; Chapman, D.D.; Shivji, M.S.; Wetherbee, B.M.; Amorim, A.F. (2006). "Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi, at two oceanic insular marine protected areas in the southwestern Atlantic Ocean: Fernando de Noronha Archipelago and Atol das Rocas, Brazil". Fisheries Research. 81 (2–3): 236–241. doi:10.1016/j.fishres.2006.07.003.
Most observed displays by grey reef sharks have been in response to a diver (or submersible) approaching and following it from a few meters behind and above. They also perform the display towards moray eels, and in one instance towards a much larger great hammerhead (which subsequently withdrew). However, they have never been seen performing threat displays towards each other. This suggests the display is primarily a response to potential threats (i.e. predators) rather than competitors. As grey reef sharks are not territorial, they are speculated to be defending a critical volume of "personal space" around themselves. Compared to sharks from French Polynesia or Micronesia, grey reef sharks from the Indian Ocean and western Pacific are not as aggressive and less given to displaying.[3]
The Black-tip Shark (Carcharhinus melanopterus) is a species of shark of the family Carcharhinidae, easily identified by the black tips of its fins, especially on the first dorsal fin and the caudal fin. It is one of the most abundant sharks in the tropical coral reefs of the Indian Ocean and Pacific Ocean. This species prefers shallow coastal waters and frequently exposes its first dorsal fin in these areas. Most Black-tipped Sharks live on reef margins and sandy bottoms, but they are also known to support brackish or freshwater environments. This species generally reaches a length of 1.6 m. Black-tip Sharks are sedentary and live in very small areas and may remain in the same area for several years. They are active predators of small bone fish, cephalopods and crustaceans, and are also known to feed on marine snakes and seabirds. The data collected concerning the life cycle of the Black-tip Shark are sometimes contradictory and there appear to be significant differences depending on the geographical location within the range of the species. Like other members of its family, this shark is viviparous and females give birth to between two and five young babies every two years, every year or sometimes twice a year. Indeed, according to its habitat the gestation period of this shark can be 7-9 months, 10-11 months or 16 months. Newborns live in coastal waters and in shallower waters than adults, often forming large groups in areas flooded by high tides. Shy and capricious, the Black-tip Shark is difficult to approach and rarely represents a danger to humans, unless it is excited by food. However, bathers in shallow waters can sometimes have their legs bitten by mistake. This shark is fished for its meat, fins and liver oil, but is not considered to be a commercially important species. The International Union for Conservation of Nature assessed the near threatened species. Although the species as a whole remains widespread and relatively common, overfishing of this shark and its slow rate of reproduction has led to its decline in a number of localities.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×