Tax-deductible donations made to Tetiaroa Society help fund critical conservation efforts, scientific research being conducted at our Ecostation, and education programs for the local schools. Your contribution also helps us advance what we are doing on Tetiaroa as a model for island/earth sustainability. We deeply appreciate your generosity and look forward to sharing our progress with you.
Like many sharks, the Caribbean reef shark mainly eats bony fishes. The shark uses six keen senses to locate its prey: olfactory, visual, tactile (including water vibration sensitivity through a lateralis canal system), auditory, gustatory, and electric reception. The Caribbean reef shark is especially adapted to detecting low frequency sounds (indicative of a struggling fish nearby).
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]
While scientists are still trying to determine exactly how many of theses species exist, we do know that many of these sharks lose their lives from getting caught in fishing nets. Not only does it significantly reduce their population, it compromises the fragile ecosystem around coral reefs. Many new laws and regulations are being put into place to protect this ever important fish.
Reproduction is viviparous; once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection through which they receive nourishment from their mother. Mating is apparently an aggressive affair, as females are often found with biting scars and wounds on their sides.[4] At the Fernando de Noronha Archipelago and Atol das Rocas off Brazil, parturition takes place at the end of the dry season from February to April, while at other locations in the Southern Hemisphere, females give birth during the Amazon summer in November and December.[4][12] The average litter size is four to six, with a gestation period of one year. Females become pregnant every other year.[8] The newborns measure no more than 74 cm (29 in) long; males mature sexually at 1.5–1.7 m (59–67 in) long and females at 2–3 m (79–118 in).[4]

The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]

Typically a solitary animal, juvenile blacktip reef sharks will commonly conjugate in shallow regions during high tide. Vulnerable to larger predators, they will reside in shallower areas until larger in size. Blacktip reef sharks tend to be more active during dawn and dusk, but like most sharks they are opportunistic feeders. Their diet consists of crustaceans, squid, octopus, and bony fish.
Barcode of Life ~ BioOne ~ Biodiversity Heritage Library ~ CITES ~ Cornell Macaulay Library ~ Encyclopedia of Life (EOL) ~ ESA Online Journals ~ FishBase ~ Florida Museum of Natural History Ichthyology Department ~ GBIF ~ Google Scholar ~ ITIS ~ IUCN RedList (Threatened Status) ~ Marine Species Identification Portal ~ NCBI (PubMed, GenBank, etc.) ~ Ocean Biogeographic Information System ~ PLOS ~ SIRIS ~ Tree of Life Web Project ~ UNEP-WCMC Species Database ~ WoRMS
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×