The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
These sharks prefer the shoreline from Florida to Brazil. This is where it gets the common name from. The tropical parts of the western Atlantic Ocean is home to this variety of sharks. Normally found on the outer edges of reefs, the Caribbean Reef Shark prefers to live in coral reefs and its shallow waters as well as continental shelves and insular shelves. These sharks are found quite commonly at a depth of about 100 feet (30 meters) and are known to dive to incredible depths of around 1250 feet (380 meters).
The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
The grey reef shark (Carcharhinus amblyrhynchos, sometimes misspelled amblyrhynchus or amblyrhinchos)[2] is a species of requiem shark, in the family Carcharhinidae. One of the most common reef sharks in the Indo-Pacific, it is found as far east as Easter Island and as far west as South Africa. This species is most often seen in shallow water near the drop-offs of coral reefs. The grey reef shark has the typical "reef shark" shape, with a broad, round snout and large eyes. This species can be distinguished from similar species by the plain or white-tipped first dorsal fin, the dark tips on the other fins, the broad, black rear margin on the tail fin, and the lack of a ridge between the dorsal fins. Most individuals are less than 1.9 m (6.2 ft) long.
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]

The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:
Caribbean reef sharks are prohibited from being caught by commercial fishers in U.S. waters, however harvest of these sharks may be permissible in other countries. During the past few decades, an increasingly popular (and even more controversial) commercial aspect of the Caribbean reef shark has emerged. To increase clientele, many dive-boat operations have come to include shark-feeding dives as a part of their agenda, with some of the most popular sites being main habitats of Caribbean reef sharks. Although new regulations prohibit such feedings off the coast of Florida, no such restrictions have been placed on operations in Bahamian or other Caribbean waters.
Despite sharks being portrayed as notorious aggressive animals, very few incidents have involved blacktip reef sharks, none being fatal. Still the importance of an apex predator is vital to a balanced and healthy ecosystem. Unfortunately, this species is very susceptible to reef gill netting. And sharks all around continue to be threatened by fishing pressure resulting in a decrease in many shark populations.
Another danger posed to humans by the Caribbean reef shark involves the accumulation of toxins in the flesh of the shark. Since sharks are apex marine predators, they may contain toxic levels of mercury and other heavy metals due to bioaccumulation (increasing concentrations at higher levels in the food web). It was found that methylmercury levels (MeHg) in sharks off the coast of Florida were higher than the FDA guidelines.
Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]
On the infrequent occasions when they swim in oceanic waters, grey reef sharks often associate with marine mammals or large pelagic fishes, such as sailfish (Istiophorus platypterus). There is an account of around 25 grey reef sharks following a large pod of bottlenose dolphins (Tursiops sp.), along with 25 silky sharks (C. falciformis) and a single silvertip shark.[13] Rainbow runners (Elagatis bipinnulata) have been observed rubbing against grey reef sharks, using the sharks' rough skin to scrape off parasites.[14]
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
×