Investing in oil and gas is speculative and involves a high degree of risk. There is no guarantee that any returns on investment will be achieved. Investors could lose all or substantially all of their investment. The content provided on this site is for information purposes only and is not a solicitation to buy or an offer to sell any securities. The general information on this site is not intended to be used as individual investment or tax advice. Potential investors should consult their personal tax advisor, attorney, accountant, and financial advisor before investing in oil and gas.
In older literature, the scientific name of this species was often given as C. menisorrah.[5] The blacktail reef shark (C. wheeleri), native to the western Indian Ocean, is now regarded as the same species as the grey reef shark by most authors. It was originally distinguished from the grey reef shark by a white tip on the first dorsal fin, a shorter snout, and one fewer upper tooth row on each side.[6] Based on morphological characters, vertebral counts, and tooth shapes, Garrick (1982) concluded the grey reef shark is most closely related to the silvertip shark (C. albimarginatus).[7] This interpretation was supported by a 1992 allozyme phylogenetic analysis by Lavery.[8]
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]
The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]
Reef Ambassadors are forever just passing through, crossing borders, taking in cultures, and exploring foreign shores. And now you can follow our ambassadors more closely, as we roll out a new monthly film series for 2016, showcasing their adventures in the best waves around the globe. This 10 Episode series will bring you along with our team to far off, exotic locales to iconic surf destinations.

Off Enewetak, grey reef sharks exhibit different social behaviors on different parts of the reef. Sharks tend to be solitary on shallower reefs and pinnacles. Near reef drop-offs, loose aggregations of five to 20 sharks form in the morning and grow in number throughout the day before dispersing at night. In level areas, sharks form polarized schools (all swimming in the same direction) of around 30 individuals near the sea bottom, arranging themselves parallel to each other or slowly swimming in circles. Most individuals within polarized schools are females, and the formation of these schools has been theorized to relate to mating or pupping.[25][26]

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).