Reproduction is viviparous; once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection through which they receive nourishment from their mother. Mating is apparently an aggressive affair, as females are often found with biting scars and wounds on their sides.[4] At the Fernando de Noronha Archipelago and Atol das Rocas off Brazil, parturition takes place at the end of the dry season from February to April, while at other locations in the Southern Hemisphere, females give birth during the Amazon summer in November and December.[4][12] The average litter size is four to six, with a gestation period of one year. Females become pregnant every other year.[8] The newborns measure no more than 74 cm (29 in) long; males mature sexually at 1.5–1.7 m (59–67 in) long and females at 2–3 m (79–118 in).[4]

Blacktip reef sharks are viviparous with a yolk-sac placenta, with a gestation period about 10 months and litter size of 2-4 pups. Size at birth ranges from 33-52 cm. Males mature at about eight years of age and 95-105 cm in length; females mature at about 9 years old and a length of 93-110 cm. Courtship features the one or more males following closely behind a female. Reproductive behavior includes distinct pairing with embrace where the male grasps the female’s pectoral fin between his teeth and mates belly to belly. There is one breeding season in the central and western Pacific, but two seasons in the Indian Ocean. Females rest for 8-14 month between pregnancies to rebuild their energy stores. Blacktip reef sharks are preyed upon by other sharks and large groupers. The is a socially complex species that performs a variety of group behaviors.
This species is commonly found in shallow waters on and near coral reefs and occasionally in brackish waters. Juveniles are typically found in extremely shallow water (±15 to 100 cm) inside lagoons, often swimming along the shoreline; adults typically occur on shallow parts of the forereef, often moving over the reef crest and onto the reef flat at flood tide. Individual adults inhabit a relatively small home range of ±2.5 km2 and appear to reside close to their home reef but occasionally cross deepwater channels between adjacent reefs.

There is little evidence of territoriality in the grey reef shark; individuals will tolerate others of their species entering and feeding within their home ranges.[27] Off Hawaii, individuals may stay around the same part of the reef for up to three years,[28] while at Rangiroa, they regularly shift their locations by up to 15 km (9.3 mi).[27] Individual grey reef sharks at Enewetak become highly aggressive at specific locations, suggesting they may exhibit dominant behavior over other sharks in their home areas.[3]


The coloration is grey above, sometimes with a bronze sheen, and white below. The entire rear margin of the caudal fin has a distinctive, broad, black band. There are dusky to black tips on the pectoral, pelvic, second dorsal, and anal fins.[9] Individuals from the western Indian Ocean have a narrow, white margin at the tip of the first dorsal fin; this trait is usually absent from Pacific populations.[5] Grey reef sharks that spend time in shallow water eventually darken in color, due to tanning.[10] Most grey reef sharks are less than 1.9 m (6.2 ft) long.[4] The maximum reported length is 2.6 m (8.5 ft) and the maximum reported weight is 33.7 kg (74 lb).[9]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×