Along with the blacktip reef shark (C. melanopterus) and the whitetip reef shark (Triaenodon obesus), the grey reef shark is one of the three most common sharks inhabiting Indo-Pacific reefs. They actively expel most other shark species from favored habitats, even species larger in size.[3] In areas where this species co-exists with the blacktip reef shark, the latter species occupies the shallow flats, while the former stays in deeper water.[4] Areas with a high abundance of grey reef sharks tend to contain few sandbar sharks (C. plumbeus), and vice versa; this may be due to their similar diets causing competitive exclusion.[11]

Reef sharks play a major role in shaping Caribbean reef communities.  As the top predators of the reef and indicator species for marine ecosystems, they help maintain the delicate balance of marine life in reef environments.  Reef sharks are highly valued for their meat, leather, liver oil, and fishmeal, which make them prone to overfishing and targeting. Yet, their importance for the tourism industry makes them more valuable alive than dead. In 2011, Honduras declared its waters to be a permanent sanctuary for sharks, making fishing for these species completely forbidden.

Blacktip reef sharks are fast, pursuit predators that prefer reef fishes, but also feeds on stingrays, crabs, mantis shrimps and other crustaceans, cephalopods, and other mollusks. In the Maldives, this species has been documented feeding cooperatively on small schooling fishes, herding them against the shore and feeding en masse. Feeds heavily on sea snakes in northern Australia. A large individual (1.6 m) was observed attacking a green sea turtle, Chelonia mydas, in North Male’ Atoll, Maldives.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×