Grey reef sharks were the first shark species known to perform a threat display, a stereotypical behavior warning that it is prepared to attack.[3] The display involves a "hunched" posture with characteristically dropped pectoral fins, and an exaggerated, side-to-side swimming motion. Grey reef sharks often do so if they are followed or cornered by divers to indicate they perceive a threat. This species has been responsible for a number of attacks on humans, so should be treated with caution, especially if they begin to display. They are caught in many fisheries and are susceptible to local population depletion due to their low reproduction rate and limited dispersal. As a result, the International Union for Conservation of Nature has assessed this species as Near Threatened.

Like many sharks, the Caribbean reef shark mainly eats bony fishes. The shark uses six keen senses to locate its prey: olfactory, visual, tactile (including water vibration sensitivity through a lateralis canal system), auditory, gustatory, and electric reception. The Caribbean reef shark is especially adapted to detecting low frequency sounds (indicative of a struggling fish nearby).
Despite its abundance in certain areas, the Caribbean reef shark is one of the least-studied large requiem sharks. They are believed to play a major role in shaping Caribbean reef communities. These sharks are more active at night, with no evidence of seasonal changes in activity or migration. Juveniles tend to remain in a localized area throughout the year, while adults range over a wider area.[7]

Most observed displays by grey reef sharks have been in response to a diver (or submersible) approaching and following it from a few meters behind and above. They also perform the display towards moray eels, and in one instance towards a much larger great hammerhead (which subsequently withdrew). However, they have never been seen performing threat displays towards each other. This suggests the display is primarily a response to potential threats (i.e. predators) rather than competitors. As grey reef sharks are not territorial, they are speculated to be defending a critical volume of "personal space" around themselves. Compared to sharks from French Polynesia or Micronesia, grey reef sharks from the Indian Ocean and western Pacific are not as aggressive and less given to displaying.[3]
The "hunch" threat display of the grey reef shark is the most pronounced and well-known agonistic display (a display directed towards competitors or threats) of any shark. Investigations of this behavior have been focused on the reaction of sharks to approaching divers, some of which have culminated in attacks. The display consists of the shark raising its snout, dropping its pectoral fins, arching its back, and curving its body laterally. While holding this posture, the shark swims with a stiff, exaggerated side-to-side motion, sometimes combined with rolls or figure-8 loops. The intensity of the display increases if the shark is more closely approached or if obstacles are blocking its escape routes, such as landmarks or other sharks. If the diver persists, the shark will either retreat or launch a rapid open-mouthed attack, slashing with its upper teeth.[3]

Reef sharks play a major role in shaping Caribbean reef communities.  As the top predators of the reef and indicator species for marine ecosystems, they help maintain the delicate balance of marine life in reef environments.  Reef sharks are highly valued for their meat, leather, liver oil, and fishmeal, which make them prone to overfishing and targeting. Yet, their importance for the tourism industry makes them more valuable alive than dead. In 2011, Honduras declared its waters to be a permanent sanctuary for sharks, making fishing for these species completely forbidden.
$eaworld biodiversity bluefin tuna Climate Change clownfish coral reefs crabs cuttlefishes deep sea dolphins endangered extinction fins fishes frogfishes ghost pipefish global warming Indonesia jellyfish mantas mantis shrimp marine biology Marine Conservation Marine Mammals Marine Protected Areas Marine Science morays nudibranchs octopuses oil spill orca overfishing Papua New Guinea phytoplankton plastics polar bears pollution scuba seafood sea horses sea level rise sea turtles sharks shrimp whales
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
×