But another potential cause is that these sharks are skittish around people. So when too many people move into the area, the reef sharks flee to other coral reefs. Indeed, the researchers found far more sharks at small, isolated reefs than they expected. But this in itself is a danger to the reef sharks. With so many sharks concentrated in a small area, “if you really wanted to, you could fish out a few hundred sharks very easily,” said Friedlander.
Generally a coastal, shallow-water species, grey reef sharks are mostly found in depths of less than 60 m (200 ft).[11] However, they have been known to dive to 1,000 m (3,300 ft).[2] They are found over continental and insular shelves, preferring the leeward (away from the direction of the current) sides of coral reefs with clear water and rugged topography. They are frequently found near the drop-offs at the outer edges of the reef, particularly near reef channels with strong currents,[12] and less commonly within lagoons. On occasion, this shark may venture several kilometers out into the open ocean.[4][11]
Typically a solitary animal, juvenile blacktip reef sharks will commonly conjugate in shallow regions during high tide. Vulnerable to larger predators, they will reside in shallower areas until larger in size. Blacktip reef sharks tend to be more active during dawn and dusk, but like most sharks they are opportunistic feeders. Their diet consists of crustaceans, squid, octopus, and bony fish.

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).