Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
On the infrequent occasions when they swim in oceanic waters, grey reef sharks often associate with marine mammals or large pelagic fishes, such as sailfish (Istiophorus platypterus). There is an account of around 25 grey reef sharks following a large pod of bottlenose dolphins (Tursiops sp.), along with 25 silky sharks (C. falciformis) and a single silvertip shark.[13] Rainbow runners (Elagatis bipinnulata) have been observed rubbing against grey reef sharks, using the sharks' rough skin to scrape off parasites.[14]
Measuring up to 3 m (9.8 ft) long, the Caribbean reef shark is one of the largest apex predators in the reef ecosystem, feeding on a variety of fishes and cephalopods. They have been documented resting motionless on the sea bottom or inside caves, unusual behavior for an active-swimming shark. If threatened, it may perform a threat display in which it frequently changes direction and dips its pectoral fins. Like other requiem sharks, it is viviparous with females giving birth to 4–6 young every other year. Caribbean reef sharks are of some importance to fisheries as a source of meat, leather, liver oil, and fishmeal, but recently they have become more valuable as an ecotourist attraction. In the Bahamas and elsewhere, bait is used to attract them to groups of divers in controversial "shark feedings". This species is responsible for a small number of attacks on humans. The shark attacks usually happen in spring and summer.

Reproduction is viviparous; once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection through which they receive nourishment from their mother. Mating is apparently an aggressive affair, as females are often found with biting scars and wounds on their sides.[4] At the Fernando de Noronha Archipelago and Atol das Rocas off Brazil, parturition takes place at the end of the dry season from February to April, while at other locations in the Southern Hemisphere, females give birth during the Amazon summer in November and December.[4][12] The average litter size is four to six, with a gestation period of one year. Females become pregnant every other year.[8] The newborns measure no more than 74 cm (29 in) long; males mature sexually at 1.5–1.7 m (59–67 in) long and females at 2–3 m (79–118 in).[4]
The Caribbean reef shark occurs throughout the tropical western Atlantic Ocean, from North Carolina in the north to Brazil in the south, including Bermuda, the northern Gulf of Mexico, and the Caribbean Sea. However, it is extremely rare north of the Florida Keys. It prefers shallow waters on or around coral reefs, and is commonly found near the drop-offs at the reefs' outer edges.[4] This shark is most common in water shallower than 30 m (98 ft), but has been known to dive to 378 m (1,240 ft).[1]
During mating, the male grey reef shark will bite at the female's body or fins to hold onto her for copulation.[13] Like other requiem sharks, it is viviparous: once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection that sustains them to term. Each female has a single functional ovary (on the right side) and two functional uteruses. One to four pups (six in Hawaii) are born every other year; the number of young increases with female size. Estimates of the gestation period range from 9 to 14 months. Parturition is thought to take place from July to August in the Southern Hemisphere and from March to July in the Northern Hemisphere. However, females with "full-term embryos" have also been reported in the fall off Enewetak. The newborns measure 45–60 cm (18–24 in) long. Sexual maturation occurs at around seven years of age, when the males are 1.3–1.5 m (4.3–4.9 ft) long and females are 1.2–1.4 m (3.9–4.6 ft) long. Females on the Great Barrier Reef mature at 11 years of age, later than at other locations, and at a slightly larger size. The lifespan is at least 25 years.[4][20][24]
Blacktip reef sharks, Carcharhinus melanopterus (Quoy and Gaimard, 1824), are small sharks measuring up to 1.8 m with short, bluntly-rounded snouts, oval eyes, and narrow-cusped teeth. They have 2 dorsal fins and no interdorsal ridges. Juveniles (< 70 cm) are yellow-brown on their dorsal (upper) sides, white on their ventral (under) sides; adults are brownish-gray and white, respectively. All their fins have conspicuous black or dark brown tips, and posterior (rear) dark edges on their pectoral fins and their upper lobe of their caudal (tail) fins. The prominent black tips of their first dorsal fin contrasts with a light band below it; a conspicuous dark band on their flanks which extends to their pelvic fins. Maximum weight: 24 kg; frequents depth ranges from the surface to 75 m.

The Caribbean reef shark infrequently attacks humans. In general, a shark attack on a human is behaviorally similar to an attack upon natural prey. A human is more susceptible to being attacked if the shark is cornered and feels that there is no escape route. In situations like these, the shark may rake the victim during the attack resulting in lacerations.


Based on morphological similarities, Jack Garrick in 1982 grouped this species with the bignose shark (C. altimus) and the sandbar shark (C. plumbeus), while Leonard Compagno in 1988 placed it as the sister species of the grey reef shark (C. amblyrhynchos). A phylogenetic analysis based on allozyme data, published by Gavin Naylor in 1992, indicated that the Caribbean reef shark is the sister taxon to a clade formed by the Galapagos shark (C. galapagensis), dusky shark (C. obscurus), oceanic whitetip shark (C. longimanus), and the blue shark (Prionace glauca). However, more work is required to fully resolve the interrelationships within Carcharhinus.[3]
The International Union for Conservation of Nature (IUCN) has assessed the Caribbean reef shark as Near Threatened; its population has declined off Belize and Cuba from overfishing and exploitation continues in other regions. They are also threatened by the degradation and destruction of their coral reef habitat.[1] Commercial fishing for this species is prohibited in United States waters.[4] They are protected in the Bahamas due to their significance to ecotourism, as well as in a number of Marine Protected Areas (MPAs) off Brazil and elsewhere. However, enforcement against illegal fishing is lacking in some of these reserves, and many areas in which this species is abundant are not protected.[1]

International shipping and import charges paid to Pitney Bowes Inc. Learn More- opens in a new window or tab Any international shipping and import charges are paid in part to Pitney Bowes Inc. Learn More- opens in a new window or tab International shipping paid to Pitney Bowes Inc. Learn More- opens in a new window or tab Any international shipping is paid in part to Pitney Bowes Inc. Learn More- opens in a new window or tab
One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
×