Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
The Reef story started 25 years ago when two brothers from Argentina Fernando and Santiago Aguerre acted on an idea to produce high quality, comfortable yet stylish sandals. Inspired by their love of the California lifestyle and surfing culture, the brothers moved to California in the early 80's and found Reef sandals. With a tiny amount of start up capital of $4000 and after lots of hard work Reef is now widely considered to be the number one sandal brand in the world.
These sharks prefer the shoreline from Florida to Brazil. This is where it gets the common name from. The tropical parts of the western Atlantic Ocean is home to this variety of sharks. Normally found on the outer edges of reefs, the Caribbean Reef Shark prefers to live in coral reefs and its shallow waters as well as continental shelves and insular shelves. These sharks are found quite commonly at a depth of about 100 feet (30 meters) and are known to dive to incredible depths of around 1250 feet (380 meters).
Investing in oil and gas is speculative and involves a high degree of risk. There is no guarantee that any returns on investment will be achieved. Investors could lose all or substantially all of their investment. The content provided on this site is for information purposes only and is not a solicitation to buy or an offer to sell any securities. The general information on this site is not intended to be used as individual investment or tax advice. Potential investors should consult their personal tax advisor, attorney, accountant, and financial advisor before investing in oil and gas.
Grey reef sharks are often curious about divers when they first enter the water and may approach quite closely, though they lose interest on repeat dives.[4] They can become dangerous in the presence of food, and tend to be more aggressive if encountered in open water rather than on the reef.[13] There have been several known attacks on spearfishers, possibly by mistake, when the shark struck at the speared fish close to the diver. This species will also attack if pursued or cornered, and divers should immediately retreat (slowly and always facing the shark) if it begins to perform a threat display.[4] Photographing the display should not be attempted, as the flash from a camera is known to have incited at least one attack.[3] Although of modest size, they are capable of inflicting significant damage: during one study of the threat display, a grey reef shark attacked the researchers' submersible multiple times, leaving tooth marks in the plastic windows and biting off one of the propellers. The shark consistently launched its attacks from a distance of 6 m (20 ft), which it was able to cover in a third of a second.[14] As of 2008, the International Shark Attack File listed seven unprovoked and six provoked attacks (none of them fatal) attributable to this species.[29]
The Caribbean reef shark (Carcharhinus perezi) is a species of requiem shark, belonging to the family Carcharhinidae. It is found in the tropical waters of the western Atlantic Ocean from Florida to Brazil, and is the most commonly encountered reef shark in the Caribbean Sea. With a robust, streamlined body typical of the requiem sharks, this species is difficult to tell apart from other large members of its family such as the dusky shark (C. obscurus) and the silky shark (C. falciformis). Distinguishing characteristics include dusky-colored fins without prominent markings, a short free rear tip on the second dorsal fin, and tooth shape and number.
The Caribbean Reef Shark, also called the Carcharhinus Perezi in the scientific community, is a member of the requiem shark species. They are mostly found on the East coast of America (Atlantic coast) and southwards. The structure of this shark is streamlined and robust and can be easily confused with other sharks in its family. When you look up close, they have an extra rear tip on the second dorsal fin. The first dorsal fin is slightly angled or curved and the gills slits are also longer than most other varieties of sharks.
The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×