Reproduction is viviparous; once the developing embryos exhaust their supply of yolk, the yolk sac develops into a placental connection through which they receive nourishment from their mother. Mating is apparently an aggressive affair, as females are often found with biting scars and wounds on their sides.[4] At the Fernando de Noronha Archipelago and Atol das Rocas off Brazil, parturition takes place at the end of the dry season from February to April, while at other locations in the Southern Hemisphere, females give birth during the Amazon summer in November and December.[4][12] The average litter size is four to six, with a gestation period of one year. Females become pregnant every other year.[8] The newborns measure no more than 74 cm (29 in) long; males mature sexually at 1.5–1.7 m (59–67 in) long and females at 2–3 m (79–118 in).[4]
Barcode of Life ~ BioOne ~ Biodiversity Heritage Library ~ CITES ~ Cornell Macaulay Library ~ Encyclopedia of Life (EOL) ~ ESA Online Journals ~ FishBase ~ Florida Museum of Natural History Ichthyology Department ~ GBIF ~ Google Scholar ~ ITIS ~ IUCN RedList (Threatened Status) ~ Marine Species Identification Portal ~ NCBI (PubMed, GenBank, etc.) ~ Ocean Biogeographic Information System ~ PLOS ~ SIRIS ~ Tree of Life Web Project ~ UNEP-WCMC Species Database ~ WoRMS
Although they only grow to about 1.6 to 3 meters (5 to 10 feet) in length, these sharks are the apex predators on the very delicate coral reefs. That means, around coral reefs, they are the top of the food chain. The significants of this goes largely unnoticed, but theWorld Wildlife Fund has classified the Reef Shark as one of the most important species on the entire planet!
Based on morphological similarities, Jack Garrick in 1982 grouped this species with the bignose shark (C. altimus) and the sandbar shark (C. plumbeus), while Leonard Compagno in 1988 placed it as the sister species of the grey reef shark (C. amblyrhynchos). A phylogenetic analysis based on allozyme data, published by Gavin Naylor in 1992, indicated that the Caribbean reef shark is the sister taxon to a clade formed by the Galapagos shark (C. galapagensis), dusky shark (C. obscurus), oceanic whitetip shark (C. longimanus), and the blue shark (Prionace glauca). However, more work is required to fully resolve the interrelationships within Carcharhinus.[3]
The Caribbean reef shark is a viviparous species, meaning its developing embryos are nourished via a placental connection. The litters average four to six pups. Although this shark’s reproduction has not been studied in the northern hemisphere, but to the south, parturition occurs during the Amazon summer of November to December. Pregnant females are often found to have biting scars from males on the sides of their bodies, due to the aggressive behaviors of males during mating. Gestation is believed to take approximately one year. A pregnant female with biting scars and wounds on the sides of her body, taken off the coast of north-northeastern Brazil, carried four near-term embryos. One was a 27.5 in. (700 mm) long male and three were females measuring 27.0 in. (685 mm), 27.4 in. (697 mm), and 27.7 in. (704 mm) in length. Because she was carrying near-term embryos, it is postulated that this area may be a pupping ground. Although such captures have shed light on the topic, relatively little is known about the reproduction of the Caribbean reef shark. Much information has been obtained from a pregnant female carrying four near-term embryos off the coast of northeastern Brazil. This female had scars and wounds on her side. Because the shark carried near-term embryos, it is postulated that this area may be a pupping ground.
The Reef story started 25 years ago when two brothers from Argentina Fernando and Santiago Aguerre acted on an idea to produce high quality, comfortable yet stylish sandals. Inspired by their love of the California lifestyle and surfing culture, the brothers moved to California in the early 80's and found Reef sandals. With a tiny amount of start up capital of $4000 and after lots of hard work Reef is now widely considered to be the number one sandal brand in the world.

The snout is rather short, broad, and rounded, without prominent flaps of skin beside the nostrils. The eyes are large and circular, with nictitating membranes (protective third eyelids). There are 11–13 tooth rows in either half of both jaws. The teeth have broad bases, serrated edges, and narrow cusps; the front 2–4 teeth on each side are erect and the others increasingly oblique. The five pairs of gill slits are moderately long, with the third gill slit over the origin of the pectoral fins.[4] The first dorsal fin is high and falcate (sickle-shaped). There is a low interdorsal ridge running behind it to the second dorsal fin, which is relatively large with a short free rear tip. The origin of the first dorsal fin lies over or slightly forward of the free rear tips of the pectoral fins, and that of the second dorsal fin lies over or slightly forward of the anal fin. The pectoral fins are long and narrow, tapering to a point.[2] The dermal denticles are closely spaced and overlapping, each with five (sometimes seven in large individuals) horizontal low ridges leading to marginal teeth.[4]


The Caribbean reef shark was originally described from off the coast of Cuba as Platypodon perezi by Poey in 1876. Bigelow and Schroeder later described the same species as Carcharhinus springeri in 1944 and the reef shark appears in much literature under this scientific name. The genus name Carcharhinus is derived from the Greek “karcharos” = sharpen and “rhinos” = nose. The currently accepted valid name is C. perezi (Poey 1876).


Grey reef sharks are prey for larger sharks, such as the silvertip shark.[9] At Rangiroa Atoll in French Polynesia, great hammerheads (Sphyrna mokarran) feed opportunistically on grey reef sharks that are exhausted from pursuing mates.[15] Known parasites of this species include the nematode Huffmanela lata and several copepod species that attach to the sharks' skin,[16][17] and juvenile stages of the isopods Gnathia trimaculata and G. grandilaris that attach to the gill filaments and septa (the dividers between each gill).[18][19]
My home in the coral reefs is being damaged by ocean acidification—which occurs when the ocean absorbs carbon and becomes acidified. I love living among thriving reefs, but increasing acidification degrades the physical structure of these reefs, putting my habitat and food supply at risk. This affects all the creatures living among the reef—not just my team of fellow blacktip reef sharks.
This species is commonly found in shallow waters on and near coral reefs and occasionally in brackish waters. Juveniles are typically found in extremely shallow water (±15 to 100 cm) inside lagoons, often swimming along the shoreline; adults typically occur on shallow parts of the forereef, often moving over the reef crest and onto the reef flat at flood tide. Individual adults inhabit a relatively small home range of ±2.5 km2 and appear to reside close to their home reef but occasionally cross deepwater channels between adjacent reefs.

The Caribbean reef shark (Carcharhinus perezi) is a species of requiem shark, belonging to the family Carcharhinidae. It is found in the tropical waters of the western Atlantic Ocean from Florida to Brazil, and is the most commonly encountered reef shark in the Caribbean Sea. With a robust, streamlined body typical of the requiem sharks, this species is difficult to tell apart from other large members of its family such as the dusky shark (C. obscurus) and the silky shark (C. falciformis). Distinguishing characteristics include dusky-colored fins without prominent markings, a short free rear tip on the second dorsal fin, and tooth shape and number.
Based on morphological similarities, Jack Garrick in 1982 grouped this species with the bignose shark (C. altimus) and the sandbar shark (C. plumbeus), while Leonard Compagno in 1988 placed it as the sister species of the grey reef shark (C. amblyrhynchos). A phylogenetic analysis based on allozyme data, published by Gavin Naylor in 1992, indicated that the Caribbean reef shark is the sister taxon to a clade formed by the Galapagos shark (C. galapagensis), dusky shark (C. obscurus), oceanic whitetip shark (C. longimanus), and the blue shark (Prionace glauca). However, more work is required to fully resolve the interrelationships within Carcharhinus.[3]

The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×