Barcode of Life ~ BioOne ~ Biodiversity Heritage Library ~ CITES ~ Cornell Macaulay Library ~ Encyclopedia of Life (EOL) ~ ESA Online Journals ~ FishBase ~ Florida Museum of Natural History Ichthyology Department ~ GBIF ~ Google Scholar ~ ITIS ~ IUCN RedList (Threatened Status) ~ Marine Species Identification Portal ~ NCBI (PubMed, GenBank, etc.) ~ Ocean Biogeographic Information System ~ PLOS ~ SIRIS ~ Tree of Life Web Project ~ UNEP-WCMC Species Database ~ WoRMS
Despite its abundance in certain areas, the Caribbean reef shark is one of the least-studied large requiem sharks. They are believed to play a major role in shaping Caribbean reef communities. These sharks are more active at night, with no evidence of seasonal changes in activity or migration. Juveniles tend to remain in a localized area throughout the year, while adults range over a wider area.[7]

The Caribbean reef shark is the most common shark on or near coral reefs in the Caribbean. It is a tropical inshore, bottom-dwelling species of the continental and insular shelves. Although C. perezi mainly inhabits shallow waters, it has been recorded to reach depths to at least 98 feet (30 m). Caribbean reef sharks are commonly found close to drop-offs on the outer edges of coral reefs and also may lie motionless on the bottom of the ocean floor. This phenomenon has also been observed in caves off the coast of Mexico and off the Brazilian archipelago of Fernando de Noronha.
The Caribbean reef shark is found throughout tropical waters, particularly in the Caribbean Sea. This shark’s range includes Florida, Bermuda, the northern Gulf of Mexico, Yucatan, Cuba, Jamaica, Bahamas, Mexico, Puerto Rico, Colombia, Venezuela, and Brazil. It is one of the most abundant sharks around the Bahamas and the Antilles. Although Caribbean reef sharks are found near reefs in southern Florida, surveys using long-line gear off the east coast of Florida reveal that Caribbean reef sharks are extremely rare north of the Florida Keys.
Tax-deductible donations made to Tetiaroa Society help fund critical conservation efforts, scientific research being conducted at our Ecostation, and education programs for the local schools. Your contribution also helps us advance what we are doing on Tetiaroa as a model for island/earth sustainability. We deeply appreciate your generosity and look forward to sharing our progress with you.
A heavy-bodied shark with a "typical" streamlined shape, the Caribbean reef shark is difficult to distinguish from other large requiem shark species. It usually measures 2–2.5 m (6.6–8.2 ft) long; the maximum recorded length is 3 m (9.8 ft) and the maximum reported weight is 70 kg (150 lb).[5][6] The coloration is dark gray or gray-brown above and white or white-yellow below, with an inconspicuous white band on the flanks. The fins are not prominently marked, and the undersides of the paired fins, the anal fin, and the lower lobe of the caudal fin are dusky.[2][4]
^ Garla, R.C.; Chapman, D.D.; Shivji, M.S.; Wetherbee, B.M.; Amorim, A.F. (2006). "Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi, at two oceanic insular marine protected areas in the southwestern Atlantic Ocean: Fernando de Noronha Archipelago and Atol das Rocas, Brazil". Fisheries Research. 81 (2–3): 236–241. doi:10.1016/j.fishres.2006.07.003.

The grey reef shark is native to the Indian and Pacific Oceans. In the Indian Ocean, it occurs from South Africa to India, including Madagascar and nearby islands, the Red Sea, and the Maldives. In the Pacific Ocean, it is found from southern China to northern Australia and New Zealand, including the Gulf of Thailand, the Philippines, and Indonesia.[4][9] This species has also been reported from numerous Pacific islands, including American Samoa, the Chagos Archipelago, Easter Island, Christmas Island, the Cook Islands, the Marquesas Islands, the Tuamotu Archipelago, Guam, Kiribati, the Marshall Islands, Micronesia, Nauru, New Caledonia, the Marianas Islands, Palau, the Pitcairn Islands, Samoa, the Solomon Islands, Tuvalu, the Hawaiian Islands and Vanuatu.[1]
The Caribbean Reef Shark is known to be relatively passive and typically doesn’t pose much of a threat to scuba divers, snorklers, swimmers, or other humans it comes into contact with. They actually tend to avoid human interaction entirely. As per theInternational Shark Attack Files, there have been 27 attacks documented since 1960, of which none have been fatal. Of those attacks, it’s believe that 4 of them were caused because the shark mistakenly thought the person was a food source. The rest of the attacks were provoked attacks such as sharks caught in fishing equipment biting the fisherman.
Based on morphological similarities, Jack Garrick in 1982 grouped this species with the bignose shark (C. altimus) and the sandbar shark (C. plumbeus), while Leonard Compagno in 1988 placed it as the sister species of the grey reef shark (C. amblyrhynchos). A phylogenetic analysis based on allozyme data, published by Gavin Naylor in 1992, indicated that the Caribbean reef shark is the sister taxon to a clade formed by the Galapagos shark (C. galapagensis), dusky shark (C. obscurus), oceanic whitetip shark (C. longimanus), and the blue shark (Prionace glauca). However, more work is required to fully resolve the interrelationships within Carcharhinus.[3]
The International Union for Conservation of Nature (IUCN) has assessed the Caribbean reef shark as Near Threatened; its population has declined off Belize and Cuba from overfishing and exploitation continues in other regions. They are also threatened by the degradation and destruction of their coral reef habitat.[1] Commercial fishing for this species is prohibited in United States waters.[4] They are protected in the Bahamas due to their significance to ecotourism, as well as in a number of Marine Protected Areas (MPAs) off Brazil and elsewhere. However, enforcement against illegal fishing is lacking in some of these reserves, and many areas in which this species is abundant are not protected.[1]
Tax-deductible donations made to Tetiaroa Society help fund critical conservation efforts, scientific research being conducted at our Ecostation, and education programs for the local schools. Your contribution also helps us advance what we are doing on Tetiaroa as a model for island/earth sustainability. We deeply appreciate your generosity and look forward to sharing our progress with you.
Are there so few reef sharks because of human activities such as fishing and finning, or were there never very many to start with? To answer this question, a team of marine biologists (which did not include Friedlander) decided to count reef sharks at coral reefs close and far to human settlements to better understand how humans impact their populations.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×