Every year, Reef Check trains thousands of citizen scientist divers who volunteer to survey the health of coral reefs around the world, and rocky reef ecosystems along the entire coast of California. The results are used to improve the management of these critically important natural resources. Reef Check programs provide ecologically sound and economically sustainable solutions to save reefs, by creating partnerships among community volunteers, government agencies, businesses, universities and other nonprofits.

Blowhole Cliffed coast Coastal biogeomorphology Coastal erosion Concordant coastline Current Cuspate foreland Discordant coastline Emergent coastline Feeder bluff Fetch Flat coast Graded shoreline Headlands and bays Ingression coast Large-scale coastal behaviour Longshore drift Marine regression Marine transgression Raised shoreline Rip current Rocky shore Sea cave Sea foam Shoal Steep coast Submergent coastline Surf break Surf zone Surge channel Swash Undertow Volcanic arc Wave-cut platform Wave shoaling Wind wave Wrack zone
The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:
The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
^ Garla, R.C.; Chapman, D.D.; Shivji, M.S.; Wetherbee, B.M.; Amorim, A.F. (2006). "Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi, at two oceanic insular marine protected areas in the southwestern Atlantic Ocean: Fernando de Noronha Archipelago and Atol das Rocas, Brazil". Fisheries Research. 81 (2–3): 236–241. doi:10.1016/j.fishres.2006.07.003.
The grey reef shark is native to the Indian and Pacific Oceans. In the Indian Ocean, it occurs from South Africa to India, including Madagascar and nearby islands, the Red Sea, and the Maldives. In the Pacific Ocean, it is found from southern China to northern Australia and New Zealand, including the Gulf of Thailand, the Philippines, and Indonesia.[4][9] This species has also been reported from numerous Pacific islands, including American Samoa, the Chagos Archipelago, Easter Island, Christmas Island, the Cook Islands, the Marquesas Islands, the Tuamotu Archipelago, Guam, Kiribati, the Marshall Islands, Micronesia, Nauru, New Caledonia, the Marianas Islands, Palau, the Pitcairn Islands, Samoa, the Solomon Islands, Tuvalu, the Hawaiian Islands and Vanuatu.[1]
This species is taken by commercial and artisanal longline and gillnet fisheries throughout its range. It is valued for meat, leather, liver oil and fishmeal. The Caribbean reef shark is the most common shark landed in Colombia (accounting for 39% of the longline catch by occurrence), where it is utilized for its fins, oil and jaws (sold for ornamental purposes). In Belize, this species is mainly caught as bycatch on hook-and-line intended for groupers and snappers; the fins are sold to the lucrative Asian market and the meat sold in Belize, Mexico, and Guatemala to make "panades", a tortilla-like confection. A dedicated shark fishery operated in Belize from the mid-1900s to the early 1990s, until catches of all species saw dramatic declines.[1] The flesh of this species may contain high levels of methylmercury and other heavy metals.[4]
Reef™ has blended the cool and casual attitude of the beach along with authentic, surf inspired designed products since 1984. Brothers Fernando and Santiago Aguerre used their entrepreneurial spirit and passion for surfing to create high quality, active lifestyle sandals. Their dedication, hard work and savvy marketing ideas has made Reef™ one of the leading surf brands in the world, offering surf clothing along with women's and kid's sandals.
Barcode of Life ~ BioOne ~ Biodiversity Heritage Library ~ CITES ~ Cornell Macaulay Library ~ Encyclopedia of Life (EOL) ~ ESA Online Journals ~ FishBase ~ Florida Museum of Natural History Ichthyology Department ~ GBIF ~ Google Scholar ~ ITIS ~ IUCN RedList (Threatened Status) ~ Marine Species Identification Portal ~ NCBI (PubMed, GenBank, etc.) ~ Ocean Biogeographic Information System ~ PLOS ~ SIRIS ~ Tree of Life Web Project ~ UNEP-WCMC Species Database ~ WoRMS

But another potential cause is that these sharks are skittish around people. So when too many people move into the area, the reef sharks flee to other coral reefs. Indeed, the researchers found far more sharks at small, isolated reefs than they expected. But this in itself is a danger to the reef sharks. With so many sharks concentrated in a small area, “if you really wanted to, you could fish out a few hundred sharks very easily,” said Friedlander.
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×