The Caribbean reef shark has an interdorsal ridge from the rear of the first dorsal fin to the front of the second dorsal fin. The second dorsal fin has a very short free rear tip. The snout of C. perezi is moderately short and broadly rounded. It has poorly developed, low anterior nasal flaps and relatively large circular eyes. Caribbean reef sharks also have moderately long gill slits with the third gill slit lying above the origin of the pectoral fin. Comparison to similar sharks:
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
Grey reef sharks feed mainly on bony fishes, with cephalopods such as squid and octopus being the second-most important food group, and crustaceans such as crabs and lobsters making up the remainder. The larger sharks take a greater proportion of cephalopods.[20] These sharks hunt individually or in groups, and have been known to pin schools of fish against the outer walls of coral reefs for feeding.[14] Hunting groups of up to 700 grey reef sharks have been observed at Fakarava atoll in French Polynesia.[21][22] They excel at capturing fish swimming in the open, and they complement hunting whitetip reef sharks, which are more adept at capturing fish inside caves and crevices.[4] Their sense of smell is extremely acute, being capable of detecting one part tuna extract in 10 billion parts of sea water.[13] In the presence of a large quantity of food, grey reef sharks may be roused into a feeding frenzy; in one documented frenzy caused by an underwater explosion that killed several snappers, one of the sharks involved was attacked and consumed by the others.[23]
The Caribbean reef shark is the most common shark on or near coral reefs in the Caribbean. It is a tropical inshore, bottom-dwelling species of the continental and insular shelves. Although C. perezi mainly inhabits shallow waters, it has been recorded to reach depths to at least 98 feet (30 m). Caribbean reef sharks are commonly found close to drop-offs on the outer edges of coral reefs and also may lie motionless on the bottom of the ocean floor. This phenomenon has also been observed in caves off the coast of Mexico and off the Brazilian archipelago of Fernando de Noronha.
A reef is a bar of rock, sand, coral or similar material, lying beneath the surface of water. Many reefs result from abiotic processes (i.e. deposition of sand, wave erosion planing down rock outcrops, and other natural processes), but the best known reefs are the coral reefs of tropical waters developed through biotic processes dominated by corals and coralline algae.
×