The Caribbean reef shark was originally described from off the coast of Cuba as Platypodon perezi by Poey in 1876. Bigelow and Schroeder later described the same species as Carcharhinus springeri in 1944 and the reef shark appears in much literature under this scientific name. The genus name Carcharhinus is derived from the Greek “karcharos” = sharpen and “rhinos” = nose. The currently accepted valid name is C. perezi (Poey 1876).
Social aggregation is well documented in grey reef sharks. In the northwestern Hawaiian Islands, large numbers of pregnant adult females have been observed slowly swimming in circles in shallow water, occasionally exposing their dorsal fins or backs. These groups last from 11:00 to 15:00, corresponding to peak daylight hours.[28] Similarly, at Sand Island off Johnston Atoll, females form aggregations in shallow water from March to June. The number of sharks per group differs from year to year. Each day, the sharks begin arriving at the aggregation area at 09:00, reaching a peak in numbers during the hottest part of the day in the afternoon, and dispersing by 19:00. Individual sharks return to the aggregation site every one to six days. These female sharks are speculated to be taking advantage of the warmer water to speed their growth or that of their embryos. The shallow waters may also enable them to avoid unwanted attention by males.[10]
^ Garla, R.C.; Chapman, D.D.; Shivji, M.S.; Wetherbee, B.M.; Amorim, A.F. (2006). "Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi, at two oceanic insular marine protected areas in the southwestern Atlantic Ocean: Fernando de Noronha Archipelago and Atol das Rocas, Brazil". Fisheries Research. 81 (2–3): 236–241. doi:10.1016/j.fishres.2006.07.003.
Off Enewetak, grey reef sharks exhibit different social behaviors on different parts of the reef. Sharks tend to be solitary on shallower reefs and pinnacles. Near reef drop-offs, loose aggregations of five to 20 sharks form in the morning and grow in number throughout the day before dispersing at night. In level areas, sharks form polarized schools (all swimming in the same direction) of around 30 individuals near the sea bottom, arranging themselves parallel to each other or slowly swimming in circles. Most individuals within polarized schools are females, and the formation of these schools has been theorized to relate to mating or pupping.[25][26]
Despite its abundance in certain areas, the Caribbean reef shark is one of the least-studied large requiem sharks. They are believed to play a major role in shaping Caribbean reef communities. These sharks are more active at night, with no evidence of seasonal changes in activity or migration. Juveniles tend to remain in a localized area throughout the year, while adults range over a wider area.[7]
One of Bermuda’s favorites, the Reefs Resort and Club is a classic retreat tucked along the island’s celebrated South Shore. Family-owned and operated by the Dodwells, their passion for island living is reflected in the love guests have for the resort and how often they return. Named #1 in the region by Conde Nast readers, this inviting hideaway perfectly captures the essence of Bermuda and the cherished traditions that make it a mecca for families, honeymooners and golf enthusiasts.
Generally a coastal, shallow-water species, grey reef sharks are mostly found in depths of less than 60 m (200 ft).[11] However, they have been known to dive to 1,000 m (3,300 ft).[2] They are found over continental and insular shelves, preferring the leeward (away from the direction of the current) sides of coral reefs with clear water and rugged topography. They are frequently found near the drop-offs at the outer edges of the reef, particularly near reef channels with strong currents,[12] and less commonly within lagoons. On occasion, this shark may venture several kilometers out into the open ocean.[4][11]
Blacktip reef sharks, Carcharhinus melanopterus (Quoy and Gaimard, 1824), are small sharks measuring up to 1.8 m with short, bluntly-rounded snouts, oval eyes, and narrow-cusped teeth. They have 2 dorsal fins and no interdorsal ridges. Juveniles (< 70 cm) are yellow-brown on their dorsal (upper) sides, white on their ventral (under) sides; adults are brownish-gray and white, respectively. All their fins have conspicuous black or dark brown tips, and posterior (rear) dark edges on their pectoral fins and their upper lobe of their caudal (tail) fins. The prominent black tips of their first dorsal fin contrasts with a light band below it; a conspicuous dark band on their flanks which extends to their pelvic fins. Maximum weight: 24 kg; frequents depth ranges from the surface to 75 m.
While scientists are still trying to determine exactly how many of theses species exist, we do know that many of these sharks lose their lives from getting caught in fishing nets. Not only does it significantly reduce their population, it compromises the fragile ecosystem around coral reefs. Many new laws and regulations are being put into place to protect this ever important fish.
The Caribbean Reef Shark is known to be relatively passive and typically doesn’t pose much of a threat to scuba divers, snorklers, swimmers, or other humans it comes into contact with. They actually tend to avoid human interaction entirely. As per theInternational Shark Attack Files, there have been 27 attacks documented since 1960, of which none have been fatal. Of those attacks, it’s believe that 4 of them were caused because the shark mistakenly thought the person was a food source. The rest of the attacks were provoked attacks such as sharks caught in fishing equipment biting the fisherman.
Sandbar shark (C. plumbeus): The sandbar shark has a snout that is shorter than the width of its mouth and a large first dorsal fin originating over the axis of the pectoral fin (the Caribbean reef shark’s first dorsal fin is further from the head than the sandbar shark). Unlike the Caribbean reef shark, the sandbar shark has widely spaced non-overlapping dermal denticles that lack defined teeth on their free edges.
Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
×