Influenced by the world around them, Reef™ strives to bring you authentic and innovative products meant to nurture an incredibly fortunate lifestyle that involves surf, sensuality and a life filled with happiness. Whether you are looking for Reef™ swimsuits, Reef™ clothing or Reef™ sandals you can be sure that function, comfort and fashion will mesh like a beach breeze and a good time.
One of Bermuda’s favorites, the Reefs Resort and Club is a classic retreat tucked along the island’s celebrated South Shore. Family-owned and operated by the Dodwells, their passion for island living is reflected in the love guests have for the resort and how often they return. Named #1 in the region by Conde Nast readers, this inviting hideaway perfectly captures the essence of Bermuda and the cherished traditions that make it a mecca for families, honeymooners and golf enthusiasts.

Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria can encourage the precipitation or accumulation of calcium carbonate to produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.
The Caribbean reef shark feeds on a wide variety of reef-dwelling bony fishes and cephalopods, as well as some elasmobranchs such as eagle rays (Aetobatus narinari) and yellow stingrays (Urobatis jamaicensis).[1] It is attracted to low-frequency sounds, which are indicative of struggling fish.[4] In one observation of a 2 m (6.6 ft) long male Caribbean reef shark hunting a yellowtail snapper (Lutjanus crysurus), the shark languidly circled and made several seemingly "half-hearted" turns towards its prey, before suddenly accelerating and swinging its head sideways to capture the snapper at the corner of its jaws.[8] Young sharks feed on small fishes, shrimps, and crabs.[8] Caribbean reef sharks are capable of everting their stomachs, which likely serves to cleanse indigestible particles, parasites, and mucus from the stomach lining.[11]
Dutch ichthyologist Pieter Bleeker first described the grey reef shark in 1856 as Carcharias (Prionodon) amblyrhynchos, in the scientific journal Natuurkundig Tijdschrift voor Nederlandsch-Indië. Later authors moved this species to the genus Carcharhinus. The type specimen was a 1.5 metres (4.9 ft)-long female from the Java Sea.[4] Other common names used for this shark around the world include black-vee whaler, bronze whaler, Fowler's whaler shark, graceful shark, graceful whaler shark, grey shark, grey whaler shark, longnose blacktail shark, school shark, and shortnose blacktail shark. Some of these names are also applied to other species.[2]
WWF works to preserve the coral habitats where reef sharks live through the creation and improved management of marine protected areas, elaboration of fisheries management plans, and the introduction of fishing bans to protect vulnerable species including reef sharks. WWF also promoted the understanding that communities can derive more economic value from reef sharks through tourism than through their capture. We support local communities to set up appropriate ecotourism systems and infrastructure to ensure well-managed and sustainable shark tourism operations.
Grey reef sharks are often curious about divers when they first enter the water and may approach quite closely, though they lose interest on repeat dives.[4] They can become dangerous in the presence of food, and tend to be more aggressive if encountered in open water rather than on the reef.[13] There have been several known attacks on spearfishers, possibly by mistake, when the shark struck at the speared fish close to the diver. This species will also attack if pursued or cornered, and divers should immediately retreat (slowly and always facing the shark) if it begins to perform a threat display.[4] Photographing the display should not be attempted, as the flash from a camera is known to have incited at least one attack.[3] Although of modest size, they are capable of inflicting significant damage: during one study of the threat display, a grey reef shark attacked the researchers' submersible multiple times, leaving tooth marks in the plastic windows and biting off one of the propellers. The shark consistently launched its attacks from a distance of 6 m (20 ft), which it was able to cover in a third of a second.[14] As of 2008, the International Shark Attack File listed seven unprovoked and six provoked attacks (none of them fatal) attributable to this species.[29]

Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×