Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
Anchialine pool Archipelago Atoll Avulsion Ayre Barrier island Bay Baymouth bar Bight Bodden Brackish marsh Cape Channel Cliff Coast Coastal plain Coastal waterfall Continental margin Continental shelf Coral reef Cove Dune cliff-top Estuary Firth Fjard Fjord Förde Freshwater marsh Fundus Gat Geo Gulf Gut Headland Inlet Intertidal wetland Island Islet Isthmus Lagoon Machair Marine terrace Mega delta Mouth bar Mudflat Natural arch Peninsula Reef Regressive delta Ria River delta Salt marsh Shoal Shore Skerry Sound Spit Stack Strait Strand plain Submarine canyon Tidal island Tidal marsh Tide pool Tied island Tombolo Windwatt
Juvenile Caribbean reef sharks are preyed upon by larger sharks such as the tiger shark (Galeocerdo cuvier) and the bull shark (C. leucas). Few parasites are known for this species; one is a dark variegated leech often seen trailing from its first dorsal fin.[4] Off northern Brazil, juveniles seek out cleaning stations occupied by yellownose gobies (Elacatinus randalli), which clean the sharks of parasites while they lie still on the bottom.[10] Horse-eye jacks (Caranx latus) and bar jacks (Carangoides ruber) routinely school around Caribbean reef sharks.[11]
While scientists are still trying to determine exactly how many of theses species exist, we do know that many of these sharks lose their lives from getting caught in fishing nets. Not only does it significantly reduce their population, it compromises the fragile ecosystem around coral reefs. Many new laws and regulations are being put into place to protect this ever important fish.

Social aggregation is well documented in grey reef sharks. In the northwestern Hawaiian Islands, large numbers of pregnant adult females have been observed slowly swimming in circles in shallow water, occasionally exposing their dorsal fins or backs. These groups last from 11:00 to 15:00, corresponding to peak daylight hours.[28] Similarly, at Sand Island off Johnston Atoll, females form aggregations in shallow water from March to June. The number of sharks per group differs from year to year. Each day, the sharks begin arriving at the aggregation area at 09:00, reaching a peak in numbers during the hottest part of the day in the afternoon, and dispersing by 19:00. Individual sharks return to the aggregation site every one to six days. These female sharks are speculated to be taking advantage of the warmer water to speed their growth or that of their embryos. The shallow waters may also enable them to avoid unwanted attention by males.[10]
But another potential cause is that these sharks are skittish around people. So when too many people move into the area, the reef sharks flee to other coral reefs. Indeed, the researchers found far more sharks at small, isolated reefs than they expected. But this in itself is a danger to the reef sharks. With so many sharks concentrated in a small area, “if you really wanted to, you could fish out a few hundred sharks very easily,” said Friedlander.
Every year, Reef Check trains thousands of citizen scientist divers who volunteer to survey the health of coral reefs around the world, and rocky reef ecosystems along the entire coast of California. The results are used to improve the management of these critically important natural resources. Reef Check programs provide ecologically sound and economically sustainable solutions to save reefs, by creating partnerships among community volunteers, government agencies, businesses, universities and other nonprofits.
Blacktip reef sharks are regularly caught by inshore fisheries and are vulnerable to depletion because of their small litter sizes and long gestation periods. Traumatogenic. May become aggressive to spear fishers and are reported to bite people wading in shallow water. Generally marketed fresh (as fillet), may be dried, salted, smoked or frozen. Fins are valued for shark-fin soup; a market that is decimating shark populations worldwide. They are also sought for their liver as source of oil.
The small shark is named for its distinct black-tipped fins. Not to be confused with the blacktip shark, a larger species with similar fin coloration, the blacktip reef shark can be found in shallow inshore waters throughout the Indo-Pacific, including coral reefs, reef flats and near drop offs. It may be seen in mangrove areas and even freshwater environments near to shore, moving in and out with the tide. The blacktip reef shark feeds primarily on fish, including many common reef fishes, but will also consume crustaceans, mollusks, and even snakes!
One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups – sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework (see stromatolite). Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake in Utah, and in Shark Bay on the coast of Western Australia.
×