Despite sharks being portrayed as notorious aggressive animals, very few incidents have involved blacktip reef sharks, none being fatal. Still the importance of an apex predator is vital to a balanced and healthy ecosystem. Unfortunately, this species is very susceptible to reef gill netting. And sharks all around continue to be threatened by fishing pressure resulting in a decrease in many shark populations.
Measuring up to 3 m (9.8 ft) long, the Caribbean reef shark is one of the largest apex predators in the reef ecosystem, feeding on a variety of fishes and cephalopods. They have been documented resting motionless on the sea bottom or inside caves, unusual behavior for an active-swimming shark. If threatened, it may perform a threat display in which it frequently changes direction and dips its pectoral fins. Like other requiem sharks, it is viviparous with females giving birth to 4–6 young every other year. Caribbean reef sharks are of some importance to fisheries as a source of meat, leather, liver oil, and fishmeal, but recently they have become more valuable as an ecotourist attraction. In the Bahamas and elsewhere, bait is used to attract them to groups of divers in controversial "shark feedings". This species is responsible for a small number of attacks on humans. The shark attacks usually happen in spring and summer.
Like all sharks, the blacktip reef shark has exceptional sensory systems. From there keen sense of smell to having the ability to see in low light condition, these adaptation have made them prestige at tracking down there prey. Sharks also have an additional sixth sense where they can sense electromagnetic fields in the water. The ampullae of Lorenzini, located in the snout region, enable a shark to detect its prey without physically seeing it.

Barcode of Life ~ BioOne ~ Biodiversity Heritage Library ~ CITES ~ Cornell Macaulay Library ~ Encyclopedia of Life (EOL) ~ ESA Online Journals ~ FishBase ~ Florida Museum of Natural History Ichthyology Department ~ GBIF ~ Google Scholar ~ ITIS ~ IUCN RedList (Threatened Status) ~ Marine Species Identification Portal ~ NCBI (PubMed, GenBank, etc.) ~ Ocean Biogeographic Information System ~ PLOS ~ SIRIS ~ Tree of Life Web Project ~ UNEP-WCMC Species Database ~ WoRMS
Corals, including some major extinct groups Rugosa and Tabulata, have been important reef builders through much of the Phanerozoic since the Ordovician Period. However, other organism groups, such as calcifying algae, especially members of the red algae Rhodophyta, and molluscs (especially the rudist bivalves during the Cretaceous Period) have created massive structures at various times. During the Cambrian Period, the conical or tubular skeletons of Archaeocyatha, an extinct group of uncertain affinities (possibly sponges), built reefs. Other groups, such as the Bryozoa have been important interstitial organisms, living between the framework builders. The corals which build reefs today, the Scleractinia, arose after the Permian–Triassic extinction event that wiped out the earlier rugose corals (as well as many other groups), and became increasingly important reef builders throughout the Mesozoic Era. They may have arisen from a rugose coral ancestor. Rugose corals built their skeletons of calcite and have a different symmetry from that of the scleractinian corals, whose skeletons are aragonite. However, there are some unusual examples of well-preserved aragonitic rugose corals in the late Permian. In addition, calcite has been reported in the initial post-larval calcification in a few scleractinian corals. Nevertheless, scleractinian corals (which arose in the middle Triassic) may have arisen from a non-calcifying ancestor independent of the rugosan corals (which disappeared in the late Permian).
×